SPI NAND Flash Datasheet **Serial Peripheral Interface (SPI)** Model AS5F38G04SNDA-08LIN ## **Serial Flash Part Numbering Information** ALLIANCE MEMORY Serial NAND Flash devices are categorized in the following diagram based on the features and densities ## AS5F X XX XX X XX X - XX X X X # **Revision History** | Rev | Date | Comments | |-----|---------------|-----------------| | 1.0 | July 28, 2025 | Initial release | ## **Contents** | 1 | Introduction | 7 | |----------|--|----| | | 1.1 Features | 7 | | | 1.2 General Description | 8 | | | 1.3 Memory Mapping Diagram | 9 | | | 1.4 ECC Protection and Spare Area | | | | 1.5 Pin Configuration | 11 | | 2 | Device Operation | 12 | | | 2.1 SPI Mode | 12 | | | 2.2 Hold Mode | 13 | | | 2.3 Write Protection Mode | | | 3 | Commands Description | 15 | | 4 | Write Operations | | | 5 | Feature Operations | | | 6 | Read Operations | 18 | | | 6.1 Read ID (9FH) | 18 | | | 6.2 Page Read (13H) | 19 | | | 6.3 Read from Cache x1 IO (03H/0BH) | 20 | | | 6.4 Read from Cache x2 IO (3BH) | | | | 6.5 Read from Cache x4 IO (6BH) | | | | 6.6 Read from Cache Dual IO (BBH) | | | | 6.7 Read from Cache Quad IO (EBH) | | | 7 | Program Operations | | | | 7.1 Program Load (PL) (02H) | | | | 7.2 Program Load x4 IO (PL x4) (32H) | | | | 7.3 Program Execute (PE) (10H) | | | 8 | Internal Data Move | | | | 8.1 Program Load Random Data (84H) | | | | 8.2 Program Load Random Data x4 (C4H/34H) | | | _ | 8.3 Program Load Random Data Quad IO (72H) | | | 9 | Erase Operation- Block Erase (D8H) | | | 10 | Reset Operation - Reset (FFH) | | | 11 | One-Time Programmable (OTP) Function | | | | 11.1 OTP Definition | | | 40 | 11.2 Parameter Page Definition | | | 12 | Block Protection | | | 13 | Status Register | | | 14
45 | Block Management | | | 15 | Power-On Process | | | 16
47 | Electrical Characteristics | | | 17 | Package Outline Information | | # **List of Figures** | Figure 1-1. Functional Block Diagram | 8 | |--|----| | Figure 1-2. Memory Mapping Diagram | 9 | | Figure 1-3. Architecture and Address of Page Size 2048+128 bytes | 10 | | Figure 1-4. Pin Assignments | 11 | | Figure 2-1. Timing Diagram of SPI Modes | 12 | | Figure 2-2. Hold Condition Diagram | 13 | | Figure 4-1. Write Enable (06H) Sequence Diagram | 16 | | Figure 4-2. Write Disable (04H) Sequence Diagram | 16 | | Figure 5-1. Get Feature (0FH) Sequence Diagram | 17 | | Figure 5-2. Set Feature (1FH) Sequence Diagram | 17 | | Figure 6-1. Read ID (9FH) Sequence Diagram | 18 | | Figure 6-2. Page Read to Cache (13H) Sequence Diagram | 20 | | Figure 6-3. Read from Cache x1 IO (03H/0BH) Sequence Diagram | 20 | | Figure 6-4. Read from Cache x2 IO (3BH) Sequence Diagram | 21 | | Figure 6-5. Read from Cache x4 IO (6BH) Sequence Diagram | 22 | | Figure 6-6. Read from Cache Dual IO (BBH) Sequence Diagram | 23 | | Figure 6-7. Read from Cache Quad (EBH) Sequence Diagram | 23 | | Figure 7-1. Program Load (02H) Sequence Diagram | 25 | | Figure 7-2. Program Load x4 IO (32H) Sequence Diagram | 26 | | Figure 7-3. Program Execute (10H) Sequence Diagram | 27 | | Figure 8-1. Program Load Random Data (84H) Sequence Diagram | 28 | | Figure 8-2. Program Load Random Data x4 (C4H/34H) Sequence Diagram | 29 | | Figure 8-3. Program Load Random Data Quad IO (72H) Sequence Diagram | 30 | | Figure 9-1. Block Erase (D8H) Sequence Diagram | 31 | | Figure 10-1. Reset (FFH) Sequence Diagram | 32 | | Figure 15-1. Power-On Process | 41 | | Figure 16-1. Serial Input Timing | 44 | | Figure 16-2. Serial Output Timing | 44 | | Figure 16-3. Hold# Timing | 44 | | Figure 16-4. WP# Timing | 44 | | Figure 17-1, LGA (8 x 6 x 0.8mm) Package Outline Drawing Information | 46 | # **List of Tables** | Table 1-1. Product Information | 7 | |--|----| | Table 1-2. ECC Protection and Spare Area for Page size 2048+128 | 10 | | Table 1-3. Pin Descriptions | 11 | | Table 3-1. SPI NAND Command Set | 15 | | Table 5-1. Feature Register Table | 17 | | Table 6-1. ID Definition Table | 18 | | Table 6-2. 24-bit of Row address | 19 | | Table 6-3. 16-bit of Column address | 19 | | Table 6-4. Wrap Bit Definition | 19 | | Table 11-1. OTP State | 33 | | Table 11-2. OTP Page Definition | 33 | | Table 11-3. Parameter Page Data-1 | 34 | | Table 11-4. Parameter Page Data-2 | 35 | | Table 12-1. Block Protection Bits Table | 38 | | Table 13-1. Status Register Bit Description | 39 | | Table 14-1. Valid Block Information | 40 | | Table 15-1. Power-On Process Parameters | 41 | | Table 16-1. SPI NAND DC Characteristics | 42 | | Table 16-2. Capacitance Characteristics | 42 | | Table 16-3. AC Time Characteristics (T _A = -40 ~ 85°C, C _L = 10pF) | 43 | | Table 17-1. LGA (8 x 6 x 0.8mm) Dimension Table | 45 | ## 1 Introduction #### 1.1 Features ■ Single-Level Cell (SLC) NAND Flash **■** Operating Voltage Support - VCC: 3.3V (3.0V to 3.6V) **■** Clock Frequency - Up to 120MHz ■ Standard, Dual and Quad SPI - Standard SPI: SCLK, CS#, SI, SO, WP#, HOLD# - Dual SPI: SCLK, CS#, SIO0, SIO1, WP#, HOLD# - Quad SPI: SCLK, CS#, SIO0, SIO1, SIO2, SIO3 **■** ECC Protection - 8bit ECC for each sector (512bytes + 32bytes) ■ Package (Pb Free and Halogen Free) - 8-pin LGA-8 (8 x 6 x 0.8mm) OTP Protection - 63 pages one time programmable ■ Performance (Typical) - Page Program Time: 610us - Page Read Time: 270us - Block Erase Time: 4ms ■ Operating Current - Read Operation Current: 25mA - Program Operation Current: 25mA - Erase Operation Current: 30mA - 120uA maximum standby current ■ Endurance - P/E cycles: more than 100,000/cycles ■ Data Retention - 10/years **■** Temperature - Operating Temperature: -40°C to +85°C - Storage Temperature: -65°C to +150°C #### **Table 1-1. Product Information** | Part Number | Density | vcc | ECC | Page Size | Block | Device | Package | |---------------------|---------|------|------|----------------|----------|-------------|---------| | AS5F38G04SNDA-08LIN | 8Gbits | 3.3V | 8bit | 2048+128 Bytes | 64 Pages | 8192 Blocks | LGA-8 | ### 1.2 General Description SPI (Serial Peripheral Interface) NAND provides a low cost and low pin count solution to alternate SPI-NOR in high density non-volatile memory storage solution for embedded systems. SPI NAND is a flash memory device with SLC NAND of the standard parallel NAND. The serial electrical interface follows the industry-standard serial peripheral interface. The command sets are similar to SPI-NOR command sets. Some modifications have been made for handling NAND-specific functions. Besides, new features are added to extend applications. The SPI NAND has 8 pin counts in total, including six signal lines plus VCC and GND. Each block of the serial NAND is subdivided into 64 programmable pages. Each page consists of a data storage region and a spare area. The data storage region is used to store user-programmed data and the spare area is typically used for memory management and error correction functions. Figure 1-1. Functional Block Diagram Confidential -8 / 47- Rev.1.0 July, 2025 ## 1.3 Memory Mapping Diagram Figure 1-2. Memory Mapping Diagram #### Notes: - 1. CA: Column Address. The 12-bit address is capable of addressing from 0 to 4095 bytes; however, only bytes 0 through 2175 are valid. Bytes 2176 through 4095 of each page are "out of bounds" do not exist in the device, and cannot be addressed. - 2. RA: Row Address. RA<5:0> selects a page inside a block, and RA<18:6> selects a block. Confidential -9 / 47- Rev.1.0 July, 2025 ### 1.4 ECC Protection and Spare Area Table 1-2. ECC Protection and Spare Area for Page size 2048+128 | Start Address | End Address | ECC Protected | Area | Description | |---------------|-------------|---------------|---------------|---| | 000h | 1FFh | Yes | Main Area 01 | Data storage region 01 | | 200h | 3FFh | Yes | Main Area 02 | Data storage region 02 | | 400h | 5FFh | Yes | Main Area 03 | Data storage region 03 | | 600h | 7FFh | Yes | Main Area 04 | Data storage region 04 | | 800h | 811h | Yes | Spare Area 01 | Meta data 01 | | 812h | 823h | Yes | Spare Area 02 | Meta data 02 | | 824h | 835h | Yes | Spare Area 03 | Meta data 03 | | 836h | 847h | Yes | Spare Area 04 | Meta data 04 | | 848h | 87Fh | Yes | Spare Area 05 | Internal ECC parity area ⁽¹⁾ | #### Notes - 1. When the ECC function is enabled, the internal ECC parity area only can be read, and the data is 'FF'. - 2. Each page is divided into 4 Sectors. Each Sector combines a 512 Bytes Main Area and a 32 Bytes Spare Area. For example, Sector 1 = Main Area 1 + Spare Area 1. The user can carefully program each sector one by one without erasing but it's not recommended. If the address was overlapped, it's double program to cause crush. Figure 1-3. Architecture and Address of Page Size 2048+128 bytes Confidential -10 / 47- Rev.1.0 July, 2025 ## 1.5 Pin Configuration Figure 1-4. Pin Assignments **Table 1-3. Pin Descriptions** | Pin Name | Туре | Description | |------------|--------|--------------------------------------| | CS# | Input | Chip Select | | SCLK | Input | Serial Clock | | SI/SIO0 | I/O | Serial Data Input / Serial Data IO0 | | SO/SIO1 | I/O | Serial Data Output / Serial Data IO1 | | WP#/SIO2 | I/O | Write Protect / Serial Data IO2 | | Hold#/SIO3 | I/O | Hold / Serial Data IO3 | | VCC | Supply | Power Supply | | VSS | Ground | Ground | Confidential -11 / 47- Rev.1.0 July, 2025 ## 2 Device Operation #### 2.1 SPI Mode SPI NAND supports two SPI modes: - CPOL = 0, CPHA = 0 (Mode 0) - CPOL = 1, CPHA = 1 (Mode 3) Input data is latched in on the rising edge of SCLK and output data is available on the falling edge of SCLK for both mode 0 and mode 3. The timing diagrams shown in this data sheet are mode 0. Figure 2-1. Timing Diagram of SPI Modes #### Note: - 1. SCLK provides interface timing for SPI NAND. Address, data and commands are latched on
the rising edge of SCLK. Data is placed on SO at the falling edge of SCLK. - 2. When CS# is 0, the device is placed in active mode. When CS# goes 1, the device is placed in inactive mode and SO is High-Z. Confidential -12 / 47- Rev.1.0 July, 2025 #### 2.1.1 Standard SPI Standard serial peripheral interface on four signals bus: System Clock (SCLK), Chip Select (CS#), Serial Data In (SI) and Serial Data Out (SO). #### 2.1.2 **Dual SPI** The device supports dual SPI operation with x2 and dual IO commands. These commands allow data to be transferred to or from the device at two times of rates of Standard SPI operation. The SI and the SO become bi-directional I/O pins: SIO0 and SIO1. #### 2.1.3 **Quad SPI** The device supports the x4 and Quad commands operation. These commands allow data to be transferred to or from the device at four times of rates of Standard SPI operation. The SI and the SO become bi-directional I/O pins: SIO0 and SIO1. The WP# and the HOLD# pins become SIO2 and SIO3. Once use the Quad SPI Mode, the Quad Enable (QE) bit of OTP register (B0[0]) must be set to 1^[1]. #### Note: 1. Reference the Table 3-1 and the Table 5-1. #### 2.2 Hold Mode The HOLD# signal goes low to stop any serial communications with the device, but doesn't stop the operation of writing status register, programming or erasing in progress. Figure 2-2. Hold Condition Diagram #### Note: Hold mode starts at the falling edge of HOLD# provided SCLK is also LOW. When SCLK is HIGH and HOLD# goes LOW, hold mode begins after the next falling edge of SCLK. Confidential -13 / 47- Rev.1.0 July, 2025 #### 2.3 Write Protection Mode Write protect (WP#) provides hardware protection mode. The WP# prevents the block lock bits (BP0, BP1, and BP2) from being overwritten. If the BRWD bit is set to 1 and WP# is LOW, the block protect bits cannot be altered. # 3 Commands Description Table 3-1. SPI NAND Command Set | Command | Op Code | 2 nd Byte | 3 rd Byte | 4 th Byte | 5 th Byte | 6 th Byte | N th | |----------------------------------|---------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------| | | | | | | | | Byte | | Write Disable | 04H | - | - | - | - | - | - | | Write Enable | 06H | - | - | - | - | - | - | | Block Erase (Block size) | D8H ⁽³⁾ | RA23-RA16 | RA15-RA8 | RA7-RA0 | - | - | - | | Program Load | 02H | CA15-CA8 | CA7-CA0 | D7-D0 | Next data | Next data | - | | Program Load x4 IO | 32H ⁽²⁾ | CA15-CA8 | CA7-CA0 | (D7-D0)x4 | Next data | Next data | - | | Program Execute | 10H ⁽³⁾ | RA23-RA16 | RA15-RA8 | RA7-RA0 | - | - | - | | Program Load Random Data | 84H ⁽¹⁾ | CA15-CA8 | CA7-CA0 | D7-D0 | Next data | Next data | - | | Program Load Random Data x4 IO | C4H/34H ⁽¹⁾⁽²⁾ | CA15-CA8 | CA7-CA0 | (D7-D0)x4 | Next data | Next data | - | | Program Load Random Data Quad IO | 72H ⁽¹⁾⁽²⁾ | CA15-CA0 | (D7-D0)x4 | Next data | Next data | Next data | - | | Page Read (to Cache) | 13H ⁽³⁾ | RA23-RA16 | RA15-RA8 | RA7-RA0 | - | - | - | | Read from Cache x1 IO | 03H/0BH | CA15-CA8 | CA7-CA0 | Dummy | D7-D0 | Next data | Wrap | | Read from Cache x2 IO | 3ВН | CA15-CA8 | CA7-CA0 | Dummy | (D7-D0)x2 | Next data | Wrap | | Read from Cache x4 IO | 6BH ⁽²⁾ | CA15-CA8 | CA7-CA0 | Dummy | (D7-D0)x4 | Next data | Wrap | | Read from Cache Dual IO | ВВН | CA15-CA0 | Dummy | (D7-D0)x2 | Next data | Next data | Wrap | | Read from Cache Quad IO | EBH ⁽²⁾ | CA15-CA0 | Dummy | (D7-D0)x4 | Next data | Next data | Wrap | | Read ID | 9FH ⁽³⁾ | A7-A0 | MID | DID | - | - | - | | Reset | FFH | - | - | - | - | - | - | | Get Feature | 0FH ⁽³⁾ | A7-A0 | D7-D0 | - | - | - | - | | Set Feature | 1FH ⁽³⁾ | A7-A0 | D7-D0 | - | - | - | - | #### Note: - 1. These commands are only available in Internal Data Move operation. - 2. Quad Enable (QE) bit needs to be set to 1 when these commands are issued. - 3. If QE = 1, do not make HOLD#/SIO3 = 0, when these commands are issued. ## 4 Write Operations The WRITE ENABLE (WREN, 06H) command is for setting the Write Enable Latch (WEL) bit. The WRITE DISABLE (WRDI, 04H) command is for clearing the WEL bit. As with any command that changes the memory contents, the WRITE ENABLE command must be executed at first in order to set the WEL bit to 1. For more information, please refer to the Page Read operation sequence, PAGE PROGRAM operation sequence, Internal Data Move operation sequence, BLOCK ERASE operation sequence and OTP operation sequence. Figure 4-1. Write Enable (06H) Sequence Diagram Figure 4-2. Write Disable (04H) Sequence Diagram Confidential -16 / 47- Rev.1.0 July, 2025 ## 5 Feature Operations The GET FEATURE (0FH) and SET FEATURE (1FH) commands are used to monitor the device status and alter the device behavior. Figure 5-1. Get Feature (0FH) Sequence Diagram Notes: If the status OIP = 1, the 'Set Feature (1FH)' command will be disable Figure 5-2. Set Feature (1FH) Sequence Diagram **Data Bits** Register Address 6 5 2 0 BRWD(R/W) BP2(R/W) BP1^(R/W) BP0(R/W) INV^(R/W) CMP^(R/W) Block Lock A0H Reserved Reserved QE(R/W) OTP вон OTP PRT(R) OTP EN(R/W) ECC EN(R/W) Reserved Reserved Reserved Reserved Status C0H Reserved ECCS1(R) ECCS0(R) P_FAIL^(R) $E_FAIL^{(R)}$ $\mathsf{WEL}^{(\mathsf{R})}$ $OIP^{(R)}$ Reserved Table 5-1. Feature Register Table #### Note: - 1. (R/W): This bit can be read & programmed. - 2. (R): This bit only can be read. - 3. Reserved : Default value 0h. - 4. The ECC status of register C0H will be cleared when ECC is disabled. - 5. The default value of feature register is A0H=0x38 , B0H=0x10 , C0H=0x00. Confidential -17 / 47- Rev.1.0 July, 2025 ## 6 Read Operations ### 6.1 Read ID (9FH) The Read ID command is used to identify the SPI NAND. The Read ID command outputs the manufacturer ID with address byte 00H and outputs the device ID when address byte is 01H. If the SCLK keeps outputting, the SO will repeatedly outputs the MID/DID. Figure 6-1. Read ID (9FH) Sequence Diagram **Table 6-1. ID Definition Table** | Address Byte | Value | R/W | Description | |--------------|-------|-----|--------------------------------| | 00h | 52h | R | Manufacturer ID: Alliance | | 01h | 3Ch | R | Device ID: AS5F38G04SNDA-08LIN | Confidential -18 / 47- Rev.1.0 July, 2025 #### 6.2 Page Read (13H) The Page Read (13H) command transfers the data from the NAND array to the cache memory. The command sequence is described as follows: - I. 13H (Page Read to Cache) - II. OFH (GET FEATURE command to read the status) - III. Read from Cache memory - 03H or 0BH (Read from Cache x1 IO) / 3BH (Read from Cache x2 IO) / 6BH (Read from Cache x4 IO) - BBH (Read from Cache Dual IO) / EBH (Read from Cache Quad IO) The Page Read command requires a 24-bit of row address consisting of dummy bits and block/page address bits, see the Table 6-2 definition. After the block/page addresses are registered, the device starts transferring from the main array to the cache register, and is busy for tRD time. During the busy time, the GET FEATURE command needs to be issued to monitor the status of Page Read. After finishing the Page Read successfully, the OIP bit in status register (C0H) will be set to 0. Then the Read from Cache command can be issued in order to read the data out of the cache. The Read from Cache command requires 16-bit of column address which consists of wrap bits and column address bits, see the Table 6-3 and Table 6-4 definition. Table 6-2. 24-bit of Row address | Block / Page | 24-bit of Row Address ⁽¹⁾ | | | | | |--------------|--------------------------------------|------------------------|-----------------------|--|--| | Block / Page | Dummy Bits | Address bits for Block | Address bits for Page | | | | | RA<23:19> ⁽¹⁾ | RA<18:6> | RA<5:0> | | | Table 6-3. 16-bit of Column address | Cache Length | 16-bit of Column Address ⁽¹⁾ | | | | | | |------------------------|---|----------|----------|-------------|-------------|--| | (Bytes) ⁽²⁾ | Wrap <2> | Wrap <1> | Wrap <0> | Address bit | s for Cache | | | | CA<15> | CA<14> | CA<13> | CA<12>(3) | CA<11:0> | | Table 6-4. Wrap Bit Definition | Wrap <2> | Wrap <1> | Wrap <0> | Cache Length (Bytes) | |----------|----------|----------|----------------------| | 0 | 0 | X | 2176 | | 0 | 1 | X | 2048 | | 1 | 0 | X | 64 | | 1 | 1 | X | 16 | #### Note: - 1. Please refer the Figure 1-2. - 2. Please refer the Table 6-4 - 3. It is recommended to set the value equal to '0'. Confidential -19 / 47- Rev.1.0 July, 2025 #### 6.2.1 Page Read to Cache (13H) Figure 6-2. Page Read to Cache (13H) Sequence Diagram ### 6.3 Read from Cache x1 IO (03H/0BH) The Read from Cache x1 IO (03H/0BH) consists of an OP code followed by 16-bit column address. The column address is composed of wrap bits and column address bits. Figure 6-3. Read from Cache x1 IO (03H/0BH) Sequence Diagram Confidential -20 / 47- Rev.1.0 July, 2025 ## 6.4 Read from Cache x2 IO (3BH) The Read from Cache x2 IO (3BH) command is similar to the Read from Cache x1 IO (03H/0BH) but the command uses two pins to output data. The data output pins include the SI (SIO0) and the SO (SIO1). Figure 6-4. Read from Cache x2 IO (3BH) Sequence Diagram Confidential -21 / 47- Rev.1.0 July, 2025 ### 6.5 Read from Cache x4 IO (6BH) The Read from Cache x4 IO (6BH) command is similar to the Read from Cache x1 IO (03H/0BH) and the Read from Cache x2 IO (3BH) but the command uses four pins to output data. The four pins include the SI (SIO0), SO (SIO1), WP# (SIO2) and HOLD# (SIO3). The Quad Enable bit (QE) of OTP register (B0[0]) must be set to enable the Read from Cache x4 IO (6BH) command. Figure 6-5. Read from Cache x4 IO (6BH) Sequence Diagram Confidential -22 / 47- Rev.1.0 July, 2025 #### 6.6 Read from Cache Dual IO (BBH) The Read from Cache Dual IO command (BBH) is similar to the Read from Cache x2 IO command (3BH) and uses both of SI (SIO0) and SO (SIO1) as input bin. Each bit in 16-bit column address and the followed dummy byte will be latched in during
the falling edge of SCLK, then the cache contents will be shifted out 2-bit in a clock cycle through the SI (SIO0) and the SO (SIO1). Figure 6-6. Read from Cache Dual IO (BBH) Sequence Diagram ### 6.7 Read from Cache Quad IO (EBH) The Read from Cache Quad IO (EBH) command is similar to the Read from Cache x4 IO (6BH) command and has 4 input pins which are SI (SIO0), SO (SIO1), WP# (SIO2) and HOLD# (SIO3). Each bit in 16-bit column address and the followed dummy byte will be latched in during the raising edge of SCLK through these four input pins, and then the cache contents will be shifted out 4-bit in a clock cycle through SI (SIO0), SO (SIO1), WP# (SIO2) and HOLD# (SIO3). The Quad Enable bit (QE) of OTP register (B0[0]) must be set to enable the Read from Cache Quad IO (EBH) command. Figure 6-7. Read from Cache Quad (EBH) Sequence Diagram Confidential -23 / 47- Rev.1.0 July, 2025 ## 7 Program Operations The PAGE PROGRAM sequence transfers the data from the host to NAND flash array through cache memory. The operation sequence programs the first byte to last byte of data within a page. If page size is not enough, those additional bytes will be ignored by the cache memory. The PAGE PROGRAM sequence is as follows: - I. 06H (WRITE ENABLE when WEL bit is 0) - II. PROGRAM LOAD - 02H (PROGRAM LOAD) / 32H (PROGRAM LOAD x4) - III. 10H (PROGRAM EXECUTE) - IV. 0FH (GET FEATURE command to read the status) At first, the WRITE ENABLE (06H) command is used to set the Write Enable Latch (WEL) bit. The Write Enable Latch (WEL) bit must be set prior to issuing a program execute (10h). The PROGRAM LOAD (02H/32H) command is issued then and the PROGRAM LOAD command can only be issued one time in a PAGE PROGRAM sequence. Secondly, the PROGRAM EXECUTE (10H) command is issued to program the data into the page. During the busy time, the GET FEATURE command needs to be issued to monitor the status of PAGE PROGRAM. After finishing the PAGE PROGRAM successfully, the OIP and WEL bit in status register (C0H) will be set to 0. ## 7.1 Program Load (PL) (02H) Figure 7-1. Program Load (02H) Sequence Diagram ### 7.2 Program Load x4 IO (PL x4) (32H) The PROGRAM LOAD x4 IO (32H) command is similar to the PROGRAM LOAD (02H) command and uses four input pins to transfer data in. The four input pins are SI (SIO0), SO (SIO1), WP# (SIO2) and HOLD# (SIO3). The Quad Enable bit (QE) of OTP register (B0[0]) must be set to enable the PROGRAM LOAD x4 IO (32H) command. The command sequence is shown as follows: Figure 7-2. Program Load x4 IO (32H) Sequence Diagram Confidential -26 / 47- Rev.1.0 July, 2025 ### 7.3 Program Execute (PE) (10H) PROGRAM EXECUTE (10H) command must be issued after the data is loaded and the WEL bit is set to HIGH. The PROGRAM EXECUTE (10H) command will transfer data from the cache to the main array. The PROGRAM EXECUTE (10H) consists of an 8-bit Op code, followed by a 24-bit address which including dummy bits and page/block address. This operation needs to wait the busy time. The OIP bit in status register (C0H) will be HIGH until controller finishes the program. The P_FAIL bit in status register (C0H) will be set HIGH if program fail. Figure 7-3. Program Execute (10H) Sequence Diagram Confidential -27 / 47- Rev.1.0 July, 2025 ### 8 Internal Data Move The Internal Data Move sequence programs or replaces data in a page with existing data. The Internal Data Move operation sequence is as follows: - I. 13H (Page Read to cache) - II. 0FH (GET FEATURE command to read the status). - III. Optional 84H/C4H/34H/72H **(PROGRAM LOAD RANDOM DATA. The command of Program load random data can be operated several times in this step.) - IV. 06H (WRITE ENABLE) - V. 10H (PROGRAM EXECUTE) - VI. 0FH (GET FEATURE command to read the status) - 84H/C4H/34H/72H commands are only available in Internal Data Move operation. #### 8.1 Program Load Random Data (84H) Program Load Random Data (84H) command consists of an OP code, followed by 16-bit column address which includes dummy bits and column address bits. This command can only be used in Internal Data Move sequence. Figure 8-1. Program Load Random Data (84H) Sequence Diagram Confidential -28 / 47- Rev.1.0 July, 2025 #### 8.2 Program Load Random Data x4 (C4H/34H) The Program Load Random Data x4 (C4H/34H) command is similar to the Program Load Random Data Command (84H) and has four input pins. The four input pins are SI(SIO0), SO(SIO1), WP#(SIO2) and HOLD#(SIO3). The Quad Enable (QE) bit needs to be set enable before the Program Load Random Data x4 command be used. The command is only available during the Internal Data Move sequence. Figure 8-2. Program Load Random Data x4 (C4H/34H) Sequence Diagram Confidential -29 / 47- Rev.1.0 July, 2025 #### 8.3 Program Load Random Data Quad IO (72H) The Program Load Random Data Quad IO (72H) is similar to the Program Load Random Data x4 (C4H/34H) command and has 4 input pins: SI(SIO0), SO(SIO1), WP#(SIO2) and HOLD#(SIO3). The Quad Enable (QE) bit in feature register (B0[0]) needs to be set to enable for the Program Load Random Data Quad IO command. This command is only available during Internal Data Move sequence. Figure 8-3. Program Load Random Data Quad IO (72H) Sequence Diagram Confidential -30 / 47- Rev.1.0 July, 2025 ## 9 Erase Operation- Block Erase (D8H) The BLOCK ERASE (D8H) command is used to erase at block level. The command sequence for BLOCK ERASE operation is as follows: - I. 06H (WRITE ENABLE command) - II. D8H (BLOCK ERASE command) - III. 0FH (GET FEATURE command to read the status register) Erase Operation sequence starts from a WRITE ENABLE (06H) command to set WEL bit to 1. After executing the WRITE ENABLE command, BLOCK ERASE (D8H) command can be issued. BLOCK ERASE (D8H) requires a 24-bit address which consists of dummy bits and row address (page address in row address will be ignored automatically). Issue the GET FEATURE (0FH) command to monitor the erase operation after issuing the BLOCK ERASE. The E_FAIL bit in status register can reflect whether the block be erased successfully or not. Figure 9-1. Block Erase (D8H) Sequence Diagram Confidential -31 / 47- Rev.1.0 July, 2025 ## 10 Reset Operation - Reset (FFH) The RESET (FFH) command stops all operations. For example, the RESET command can stop the previous operation and the pending operations during a cache program or a cache read command. Figure 10-1. Reset (FFH) Sequence Diagram Confidential -32 / 47- Rev.1.0 July, 2025 ## 11 One-Time Programmable (OTP) Function #### 11.1 OTP Definition The serial device offers a protected, OTP area. 63 full pages are available on the device. Users can use the OTP area any way they want, like programming serial numbers, or other data, for permanent storage. When delivered from factory, feature bit OTP PRT is 0. #### Table 11-1, OTP State | OTP_PRT | OTP_EN | State | | | | | | |---------|--------|---|--|--|--|--|--| | Х | 0 | ormal operation. Cannot access the OTP region. | | | | | | | 0 | 1 | ccess OTP region. PAGE READ and PAGE PROGRAM are allowed. | | | | | | | | | The OTP_PRT has two situations when the device power on, | | | | | | | | | 1. OTP_PRT is 0 when the device power on: User can use SET FEATURE command to set the | | | | | | | 1 | 1 | OTP_PRT and OTP_EN bit to 1, and then issue PROGRAM EXECUTE (10H) to lock OTP region. | | | | | | | | | Once the OTP region was locked, the OTP_PRT will permanently be 1. | | | | | | | | | 2. OTP_PRT is 1 when the device power on: user can only read the OTP region data. | | | | | | #### Table 11-2. OTP Page Definition | Page Address | Page Name | Description | Data Length | Notes | |--------------|------------------|--------------------------------|---------------|-------| | 00h | Parameter Page | Factory Programmed Board Only | OFC Didoo * C | | | OON | OTP Page [0] | Factory Programmed , Read Only | 256 Bytes * 6 | | | 045 255 | OTD De ve [4:02] | Read & Program when OTP_PRT=0 | Page Size: | | | 01h ~ 3Fh | OTP Page [1:63] | Read Only when OTP_PRT=1 | 2,176 Bytes | | ### How to access to OTP region: - 1. Issue the GET FEATUTE command (0FH). - 2. Set Feature bit OTP_EN. - Issue the PAGE READ command or PAGE PROGRAM command. The PAGE PROGRAM command can be allowed only when OTP_PRT is 0. The PAGE READ command will automatically be ignored if OTP_PRT is 1. #### **How to protect OTP region:** Only when the following steps are completed, the OTP_PRT will be set to 1. - 1. Issue the SET FEATURE (1FH) command. - 2. Set feature bit OTP_EN and OTP_PRT. - 3. 06H (WRITE ENABLE) - 4. Issue the PROGRAM EXECUTE (10H) command. - 5. Issue the GET FEATURE (0FH) command to wait the device goes to ready state from busy. Confidential -33 / 47- Rev.1.0 July, 2025 ### 11.2 Parameter Page Definition Table 11-3. Parameter Page Data-1 | | Parameter Page Data Structure | | | | | | | | | |------------------|---|---------|--|--|--|--|--|--|--| | Address
(DEC) | Description | Display | VALUE | | | | | | | | 0~3 | Parameter page signature | ASCII | 4Fh, 4Eh, 46h, 49h | | | | | | | | 4~5 | ONFI Revision number | HEX | 00h, 00h | | | | | | | | 6~7 | Features supported | HEX | 00h, 00h | | | | | | | | 8~9 | Optional commands supported | HEX | 06h, 00h | | | | | | | | 10~31 | Reserved (0) | HEX | ALL 00h | | | | | | | | 32~43 | Device manufacturer (12 Bytes ASCII characters) | ASCII | 41h, 4Ch, 4Ch, 49h, 41h, 4Eh, 43h, 45h, 20h, 20h, 20h | | | | | | | | 44~63 | Device model (20Bytes ASCII characters) | | | | | | | | | | 44~03 | AS5F38G04SNDA-08LIN | ASCII | 41h, 53h, 35h, 46h, 33h, 38h, 47h, 30h, 34h, 53h, 4Eh, 44h, 41h, 2Dh, 30h, 38h, 4Ch, 49h, 4Eh, 20h | | | | | | | | 64 | JEDEC manufacturer ID | HEX | 52h | | | | | | | | 65~66 | Date code | HEX | 00h, 00h | | | | | | | | 67~79 | Reserved (0) | HEX | ALL 00h | | | | | | | |
80~83 | Number of data bytes per page | HEX | 00h, 08h, 00h, 00h | | | | | | | | 84~85 | Number of spare bytes per page | HEX | 80h, 00h | | | | | | | | 86~89 | Number of data bytes per partial page | HEX | 00h, 00h, 00h, 00h | | | | | | | | 90~91 | Number of spare bytes per partial page | HEX | 00h, 00h | | | | | | | | 92~95 | Number of pages per block | HEX | 40h, 00h, 00h, 00h | | | | | | | | 96~99 | Number of blocks per logical unit (LUN) | HEX | 00h, 20h, 00h, 00h | | | | | | | | 100 | Number of logical units (LUNs) | HEX | 01h | | | | | | | | 101 | Number of address cycles | HEX | 00h | | | | | | | | 102 | Number of bits per cell | HEX | 01h | | | | | | | | 103~104 | Bad blocks maximum per LUN | HEX | A0h, 00h | | | | | | | | 105~106 | Block endurance | HEX | 01h, 05h | | | | | | | | 107 | Guaranteed valid blocks at beginning of target | HEX | 01h | | | | | | | | 108~109 | Block endurance for guaranteed valid blocks | HEX | 00h, 00h | | | | | | | | 110 | Number of programs per page | HEX | 04h | | | | | | | | 111 | Partial programming attributes | HEX | 00h | | | | | | | | 112 | Number of bits ECC correctability | HEX | 08h | | | | | | | | 113 | Number of interleaved address bits | HEX | 00h | | | | | | | | 114 | Interleaved operation attributes | HEX | 00h | | | | | | | | 115~127 | Reserved (0) | HEX | ALL 00h | | | | | | | | 128 | I/O pin capacitance | HEX | 00h | | | | | | | | 129~130 | Timing mode support | HEX | 00h, 00h | | | | | | | | 131~132 | Program cache timing mode support | HEX | 00h, 00h | | | | | | | | 133~134 | tPROG Maximum page program time (us) | HEX | EEh, 02h | | | | | | | | 135~136 | tBERS Maximum block erase time (us) | HEX | 88h, 13h | | | | | | | | 137~138 | tR Maximum page read time (us) | HEX | 2Ch, 01h | | | | | | | | 139~140 | tCCS Minimum change column setup time (ns) | HEX | 00h, 00h | | | | | | | | 141~163 | Reserved (0) | HEX | ALL 00h | | | | | | | | 164~165 | Vendor specific Revision number | HEX | 00h, 00h | | | | | | | | 166~253 | Vendor specific | HEX | ALL 00h | | | | | | | | 254~255 | Integrity CRC | HEX | (SEE THE Note 1) | | | | | | | | 256~511 | Value of Address 0~255 | HEX | Same as address 0~255 | | | | | | | | 512~767 | Value of Address 0~255 | HEX | Same as address 0~255 | | | | | | | | l-t- 4: (C-::: | | | 1 17 | | | | | | | Note 1: (Source : ONFI_1.0_GOLD) The CRC shall be calculated using the following 16-bit generator polynomial : $G(X) = X^{16} + X^{15} + X^2 + 1$ The CRC calculation covers all of data between byte 0 and byte 253 of the parameter page inclusive. This polynomial in hex may be represented as 8005h. The CRC value shall be initialized with a value of 4F4Eh before the calculation begins. Table 11-4. Parameter Page Data-2 | Description | Payameter Page Data Structure | | | | | | | | |--|-------------------------------|------------|-------|---|--|--|--|--| | MASCI 499, 418, 539, 486 Yes Manufacturer name ASCI 419, 418, 539, 486, 439, 439, 439, 439, 439, 439, 439, 439 | Address | Decembries | | ameter Page Data Structure | | | | | | Version - Subversion | | • | | | | | | | | 739-780 | | • | | | | | | | | Model Faure | | | | | | | | | | 786-090 ASST-38664SRAD-AGEIN ASSI 41h, 53h, 38h, 47h, 38h, 47h, 38h, 48h, 45h, 45h, 45h, 44h, 41h, 20h, 20h, 20h 800-900 Page size (do not include OCB) HEX Colo, 00h, 00h, 00h 800-900 Page size (do not include OCB) HEX Colo, 00h, 00h, 00h 814-917 Page per block HEX Colo, 00h, 00h, 40h 814-917 Page per block HEX Colo, 00h, 00h, 40h 822-925 Mac bad blocks per lun HEX Colo, 00h, 20h, 00h 822-925 Mac bad blocks per lun HEX Colo, 00h, 00h, 00h 830-935 Lurs per larged HEX Colo, 00h, 00h, 00h 840-937 Lurs per larged HEX Colo, 00h, 00h, 00h 840-940 ECC two page (doman) HEX Colo, 00h, 00h, 00h 840-941 ECC two page (doman) HEX Colo, 00h, 00h, 00h 840-940 ECC two page (doman) HEX Colo, 00h, 00h, 00h 840-941 ECC two page (doman) HEX Colo, 00h, 00h, 00h 840-940 ECC two page (doman) HEX Colo, 00h, 00h, 00h 8 | 773~785 | | ASCII | 41h, 4Ch, 4Ch, 49h, 41h, 4Eh, 43h, 45h, 20h, 20h, 20h, 20h, 20h | | | | | | ASS-80 A | 786~801 | | | | | | | | | 800-913 Page state (for not include OOB) | | | | | | | | | | 810-913 OOB size (physical) | | , | | | | | | | | 814-917 Pages per Diock HEX | | , | | | | | | | | 818-92-292 Kane Books per lun HEX 0000, 000, 200, 000 828-92-292 Pianes per lun (logical) HEX 000, 000, 000, 001 828-92-292 Pianes per lun (logical) HEX 000, 000, 000, 010 838-93-31 Total targets HEX 000, 000, 000, 010 838-93-91 ECS chreght (elocimal) HEX 000, 000, 000, 010 842-943 ECS desp saz (elocimal) HEX 000, 000, 000, 000 847 Reserved HEX 000, 000, 000, 000 847 Reserved HEX 000, 000, 000, 000 848-949 SDR Road shilly HEX 000, 000, 000, 000 850-9813 SDR 1_1 read HEX 000, 37 850-983 SDR 1_1 read (ox) HEX 000, 37 884-9849 SDR 1_1 read (ox) HEX 000, 32 884-985 SDR 1_1 read (ox) HEX 000, 21 884-985 SDR 1_1 read (ox) HEX 000, 21 888-985 SDR 1_1 read (ox) HEX 000, 000 888-986 SDR 1_1 g. g. read | | | | | | | | | | 822-292 Max bad blocks per lun (pojoal) HEX ODN, 00h, 00h, 00h 820-820 Para por lun (pojoal) HEX ODN, 00h, 00h, 00h 830-933 Luns per target HEX ODN, 00h, 00h, 00h 838-941 EGC Strongfin (socimal) HEX ODN, 00h, 00h, 00h 838-941 EGC Strongfin (socimal) HEX ODN, 00h, 00h, 00h 847 Flage HEX EON 848-949 SDR Read ability HEX EON 848-949 SDR Read ability HEX EON 849-953 SDR Read ability HEX EON 852-953 SDR T.1,1 fast read HEX SDR, 2th 852-953 SDR T.1,2 read (siz) HEX SBR, 2th 866-957 SDR T.2, 2 read (siza) HEX SBR, 2th 866-957 SDR T.2, 1 read (siza) HEX SBR, 2th 868-959 SDR T.1, 1 read HEX SBR, 2th 868-959 SDR T.2, 2 read (siza) HEX SBR, 2th 869-959 SDR T.3, 3 read (siza) HEX | | | | | | | | | | 820-832 Planes per lang (logical) | | • | | | | | | | | 830-943 Lums per target | | · | | • • • | | | | | | 83-8437 Total targets HEX 00h, 00h, 00h, 00h 88-841 ECC strength (sciormal) HEX 00h, 00h, 00h, 00h 840 Flag HEX 00h, 00h, 00h 847 Reserved HEX 00h, 00h, 00h 847 Reserved HEX 00h 850-981 SDR Read solity HEX 00h 850-9851 SDR 1.1, 1 fread HEX 00h 850-9851 SDR 1.1, 2 read (v2) HEX 00h, 20h 864-9859 SDR 1.1, 4 read (val) HEX 38h, 21h 869-957 SDR 1.2, 2 read (val) HEX 38h, 21h 869-959 SDR 1.1, 4 read (val) HEX 68h, 21h 869-959 SDR 1.1, 4 read (val) HEX 68h, 21h 869-959 SDR 1.1, 5 read (val) HEX 68h, 21h 869-969 SDR 1.1, 6 read (val) HEX 69h, 21h 869-97 SDR 1.2, 7 read (val) HEX 00h, 00h 872-97 (Continuous) SDR 1.2, 6 read (ctal) HEX 00h, 00h | | | | | | | | | | B38-941 ECC atternity (declinari) | | | | | | | | | | 842-845 ECC atep size (decimal) HEX Onn, Onn, Onn, Onn, Onn, Onn, Onn, Onn, | | • | | | | | | | | 8467 Reserved HEX E9h 848-489 SDR Read ability HEX Ob., 37h 860-851 SDR 1,1 fread HEX Ob., 37h 862-853 SDR 1,1 fread HEX Ob., 21h 867-857 SDR 1,1 fread (r2) HEX SDR, 21h 867-857 SDR 1,2 fread (r2) HEX SDR, 21h 867-857 SDR 1,2 fread (r2) HEX SDR, 21h 867-857 SDR 1,2 fread (r2) HEX BDR, 21h 867-857 SDR 1,3 fread (b) HEX Ob., 21h 867-858 SDR 1,4 fread (b) HEX Ob., 21h 867-858 SDR 1,5 fread (b) HEX Obh, 00h 867-867 (Continuous) SDR 1,1 fread (b) HEX Obh, 00h 870-871 (Continuous) SDR 1,1 fread (c) HEX Obh, 00h 870-877 (Continuous) SDR 1,1 fread (c) HEX Obh, 00h 870-877 (Continuous) SDR 1,2 fread (c) HEX Obh, 00h 877-879 (Continuous) SDR 1,4 fread (c) HEX Obh, 00h< | | | | | | | | | | 847 Reserved HEX Obn 860-861 SDR Rand ability HEX Obn, 3Fh 800-851 SDR 1, 1 feat and HEX Obn, 2Fh 854-955 SDR 1, 1 feat and HEX OBn, 2th 856-955 SDR 1, 2 read (v2) HEX SBh, 2th 866-957 SDR 1, 2 read (v3) HEX SBh, 2th 800-951 SDR 1, 4 read (Ound) HEX SBh, 2th 800-951 SDR 1, 4 read (Guad) HEX Obn, 00h 964-965 SDR 1, 8 read (Cotal) HEX Obn, 00h 964-965 SDR 1, 8 read (Cotal) HEX Obn, 00h 964-965 SDR 1, 8 read (Cotal) HEX Obn, 00h 964-967 (Continuous) SDR 1, 1 read HEX Obn, 00h 968-9687 (Continuous) SDR 1, 1 read (v3) HEX Obn, 00h 970-973 (Continuous) SDR 1, 1 read (v3) HEX Obn, 00h 972-973
(Continuous) SDR 1, 1 read (v3) HEX Obn, 00h 974-975 (Continuous) SDR 1, 1 read (v3) HEX <td></td> <td>, , ,</td> <td></td> <td></td> | | , , , | | | | | | | | B48-949 SDR Read ability | | | | | | | | | | BSO-851 SDR 1_1 fread | | | | | | | | | | 882-853 SDR 1_1_2 read (2) HEX 3Bh. 21h 856-857 SDR 1_2_2 read (bual) HEX BBh. 21h 856-859 SDR 1_2_2 read (bual) HEX BBh. 21h 856-859 SDR 1_2_1 read (val) HEX BBh. 21h 862-869 SDR 1_2_1 read (bual) HEX BBh. 21h 862-863 SDR 1_2_1 read (cotal) HEX Obn. 00h 866-867 (Continuous) SDR 1_1 read HEX Obn. 00h 866-867 (Continuous) SDR 1_1, 1 read HEX Obn. 00h 870-871 (Continuous) SDR 1_2 read (c)2 HEX Obn. 00h 870-874 (Continuous) SDR 1_2 read (c)2 HEX Obn. 00h 874-875 (Continuous) SDR 1_4 read (c)2 HEX Obn. 00h 878-877 (Continuous) SDR 1_4 read (s) HEX Obn. 00h 878-879 (Continuous) SDR 1_4 read (s) HEX Obn. 00h 882-881 (Continuous) SDR 1_5 Read (s) HEX Obn. 00h 882-883 DDR R_1_1 fast read HEX Obn. 00h 882-885 | | • | | | | | | | | 854-855 SDR 1, 2 read (20ua) HEX 88h, 21h 856-867 SDR 1, 2 read (dual) HEX 88h, 21h 856-869 SDR 1, 4 read (Quad) HEX E8h, 21h 862-861 SDR 1, 4 read (Quad) HEX E8h, 21h 862-863 SDR 1, 8 read (Octal) HEX Obn, 00h 868-867 COntinuous) SDR 1, 1 read (AB) HEX Obn, 00h 868-869 (Continuous) SDR 1, 1 read (22) HEX Obn, 00h 870-871 (Continuous) SDR 1, 1 read (22) HEX Obn, 00h 872-873 (Continuous) SDR 1, 2 read (ual) HEX Obn, 00h 872-877 (Continuous) SDR 1, 4 read (Wa) HEX Obn, 00h 872-877 (Continuous) SDR 1, 8 read (Octal) HEX Obn, 00h 872-879 (Continuous) SDR 1, 1 sead (8) HEX Obn, 00h 882-883 (DR Read ability HEX Obn, 00h 882-883 (DR Read ability HEX Obn, 00h 882-887 (DR 1, 1 read HEX Obn, 00h 882-889 (DR 1, 2 read (val) HEX Obn, 00h 884-885 (DR 1, 2 read (val) HEX <td< td=""><td></td><td></td><td></td><td></td></td<> | | | | | | | | | | 856-857 SDR 1, 2 read (dual) HEX 8bh. 21h 850-869 SDR 1, 1 4 read (Qual) HEX 6bh. 21h 860-861 SDR 1, 1 8 read (Qual) HEX 2bh. 21h 862-863 SDR 1, 1 8 read (W8) HEX 0oh. 0oh 866-867 (Continuous) SDR 1, 1 read HEX 0oh. 0oh 866-867 (Continuous) SDR 1, 1 read HEX 0oh. 0oh 870-871 (Continuous) SDR 1, 1 read (Parad (Para | | | | | | | | | | 858-69 SDR 1, 1, 4 read (v4) HEX 6bh. 21h 862-861 SDR 1, 1, 8 read (v8) HEX 0bh. 0bh 862-863 SDR 1, 1, 8 read (v8) HEX 0bh. 0bh 868-867 COnfinuous) SDR 1, 1, 1 read HEX 0bh. 0bh 868-869 Confinuous) SDR 1, 1, 1 read and (v2) HEX 0bh. 0bh 868-869 Confinuous) SDR 1, 1, 1 read (v2) HEX 0bh. 0bh 872-873 Confinuous) SDR 1, 2 read (v2) HEX 0bh. 0bh 872-873 Continuous) SDR 1, 2 read (v2) HEX 0bh. 0bh 872-873 Continuous) SDR 1, 4 read (v3) HEX 0bh. 0bh 872-873 Continuous) SDR 1, 4 read (v3) HEX 0bh. 0bh 872-879 Continuous) SDR 1, 4 read (v3) HEX 0bh. 0bh 872-879 Continuous) SDR 1, 1 sead (v3) HEX 0bh. 0bh 882-883 DDR 1, 1 sead (v3) HEX 0bh. 0bh 882-893 DDR 1, 1, 1 read HEX 0bh. 0bh 882-893 DDR 1, 2, read (v2) HEX 0bh. 0bh | | | | | | | | | | B60-B61 SDR 1_4 read (Ouad) | | | | | | | | | | 862-863 SDR 1_8 Prad (X8) HEX 00h. 00h 868-865 SDR 1_8 Prad (Cotal) HEX 00h. 00h 868-869 (Continuous) SDR 1_1_1 read HEX 00h. 00h 868-869 (Continuous) SDR 1_1_1 read HEX 00h. 00h 872-873 (Continuous) SDR 1_1_2 read (v2) HEX 00h. 00h 872-873 (Continuous) SDR 1_2 read (dual) HEX 00h. 00h 876-877 (Continuous) SDR 1_2 read (v2) HEX 00h. 00h 876-877 (Continuous) SDR 1_4 read (Quad) HEX 00h. 00h 878-879 (Continuous) SDR 1_8 read (Octal) HEX 00h. 00h 882-883 DDR 1_1 read HEX 00h. 00h 882-883 DDR 1_1 read HEX 00h. 00h 888-887 DDR 1_1 read HEX 00h. 00h 888-889 DDR 1_2 read (v2) HEX 00h. 00h 889-891 DDR 1_2 read (v2) HEX 00h. 00h 889-899 DDR 1_3 read (v3) HEX 00h. 00h 898-897 DDR 1_4 read (val) | | | | | | | | | | 684-865 SDR 1_8_8 read (Odal) HEX 00h. 00h 866-867 (Continuous) SDR 1_1_1 fast read HEX 00h. 00h 870-871 (Continuous) SDR 1_1_2 read (v2) HEX 00h. 00h 877-872 (Continuous) SDR 1_2 read (v2) HEX 00h. 00h 874-875 (Continuous) SDR 1_2 read (Qual) HEX 00h. 00h 876-877 (Continuous) SDR 1_1_4 read (Qual) HEX 00h. 00h 878-879 (Continuous) SDR 1_1_8 read (v8) HEX 00h. 00h 880-881 (Continuous) SDR 1_8 read (Octal) HEX 00h. 00h 884-885 DDR Read ability HEX 00h. 00h 884-887 DDR 1_1 read HEX 00h. 00h 886-887 DDR 1_1_1 read HEX 00h. 00h 889-8891 DDR 1_2_2 read (dual) HEX 00h. 00h 894-895 DDR 1_1_2 read (v2) HEX 00h. 00h 894-897 DDR 1_2 read (v2) HEX 00h. 00h 894-9981 DOR 1_3 read (v3) HEX 00h. 00h 994-9995 <t< td=""><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | 866-867 (Continuous) SDR 1_1_1read HEX 00h, 00h 868-869 (Continuous) SDR 1_1_1read HEX 00h, 00h 870-871 (Continuous) SDR 1_2 read (dual) HEX 00h, 00h 872-873 (Continuous) SDR 1_2 read (dual) HEX 00h, 00h 876-877 (Continuous) SDR 1_4 read (Quad) HEX 00h, 00h 878-879 (Continuous) SDR 1_4 read (Suad) HEX 00h, 00h 882-881 (Continuous) SDR 1_6 read (Val) HEX 00h, 00h 882-883 DDR Read ability HEX 00h, 00h 888-887 DDR 1_1 read HEX 00h, 00h 888-888 DDR 1_1 read (Val) HEX 00h, 00h 890-891 DDR 1_2 read (Val) HEX 00h, 00h 892-893 DDR 1_1 read (Val) HEX 00h, 00h 893-899 DDR 1_2 read (Val) HEX 00h, 00h 894-895 DDR 1_4 read (Val) HEX 00h, 00h 896-897 DDR 1_4 read (Val) HEX 00h, 00h 896-997 (Continuous) DDR | | | | | | | | | | 888-889 (Continuous) SDR 1_1_fatered HEX 00h, 00h 870-871 (Continuous) SDR 1_2 read (x2) HEX 00h, 00h 874-875 (Continuous) SDR 1_2 read (x4) HEX 00h, 00h 874-875 (Continuous) SDR 1_4 read (x4) HEX 00h, 00h 878-877 (Continuous) SDR 1_4 read (x0ad) HEX 00h, 00h 878-879 (Continuous) SDR 1_8 read (x8) HEX 00h, 00h 880-881 (Continuous) SDR 1_8 read (x8) HEX 00h, 00h 884-885 (Continuous) SDR 1_1 read HEX 00h, 00h 884-885 (DDR 1_1 read HEX 00h, 00h 888-889 (DDR 1_1 read) HEX 00h, 00h 888-889 (DDR 1_2 read (x2) HEX 00h, 00h 888-899 (DDR 1_4 read (dual) HEX 00h, 00h 894-895 (DDR 1_4 read (x) HEX 00h, 00h 898-897 (DDR 1_4 read (x) HEX 00h, 00h 898-899 (DDR 1_8 read (x) HEX 00h, 00h 898-899 (DDR 1_8 read (x) HEX 00h, 00h 899-901 (Continuous) DDR 1_1 read HEX 00h, 00h 909-901 (Continuous) DDR 1_1 read (x) HEX | | | | | | | | | | 870-871 (Continuous) SDR 1_1 2 read (x2) HEX 00h, 00h 872-873 (Continuous) SDR 1_2 2 read (val) HEX 00h, 00h 876-877 (Continuous) SDR 1_4 4 read (Quad) HEX 00h, 00h 876-877 (Continuous) SDR 1_4 8 read (Quad) HEX 00h, 00h 880-881 (Continuous) SDR 1_8 8 read (Octal) HEX 00h, 00h 882-883 DDR Read ability HEX 00h, 00h 884-885 DDR 1_1 fread HEX 00h, 00h 886-887 DDR 1_1 2 read (x2) HEX 00h, 00h 888-889 DDR 1_1 2 read (x2) HEX 00h, 00h 898-891 DDR 1_1 4 read (val) HEX 00h, 00h 898-893 DDR 1_1 5 read (wal) HEX 00h, 00h 898-893 DDR 1_1 6 read (Quad) HEX 00h, 00h 898-895 DDR 1_1 7 read (Val) HEX 00h, 00h 898-896 DDR 1_1 8 read (wal) HEX 00h, 00h 898-899 DDR 1_2 8 read (Octal) HEX 00h, 00h 909-901 (Cont | | , | | | | | | | | 872-873 (Continuous) SDR 1_2 2 read (dual) HEX Obh, 00h 874-875 (Continuous) SDR 1_4 1 read (v4) HEX Obh, 00h 878-877 (Continuous) SDR 1_4 1 read (v8) HEX Obh, 00h 878-879 (Continuous) SDR 1_8 1 read (v8) HEX Obh, 00h 880-881 (Continuous) SDR 1_8 8 read (Octal) HEX Obh, 00h 884-885 DDR Read ability HEX Obh, 00h 888-887 DDR 1_1 1 read HEX Obh, 00h 889-889 DDR 1_2 2 read (dual) HEX Obh, 00h 894-895 DDR 1_4 2 read (v2) HEX Obh, 00h 894-891 DDR 1_4 2 read (v3) HEX Obh, 00h 894-895 DDR 1_4 4 read (v3) HEX Obh, 00h 894-895 DDR 1_4 1 read (v3) HEX Obh, 00h 894-897 DDR 1_4 1 read (v3) HEX Obh, 00h 909-901 (Continuous) DDR 1_1 1 read HEX Obh, 00h 909-903 (Continuous) DDR 1_1 1 read (v2) HEX Obh, 00h 909-901 | | , , , | | | | | | | | 874-875 (Continuous) SDR 1_1 4 read (x4) HEX 00h, 00h 876-877 (Continuous) SDR 1_4 4 read (Quad) HEX 00h, 00h 878-878 (Continuous) SDR 1_8 8 read (x8) HEX 00h, 00h 880-881 (Continuous) SDR 1_8 8 read (Octal) HEX 00h, 00h 884-885 DDR 1_1 read HEX 00h, 00h 884-886 DDR 1_1 flast read HEX 00h, 00h 890-891 DDR 1_2 read (x2) HEX 00h, 00h 890-891 DDR 1_2 read (x4) HEX 00h, 00h 890-893 DDR 1_4 read (x4) HEX 00h, 00h 898-899 DDR 1_8 read (Quad) HEX 00h, 00h 898-899 DDR 1_8 read (Octal) HEX 00h, 00h 900-901 (Continuous) DDR 1_1 read HEX 00h, 00h 900-903 (Continuous) DDR 1_1 read HEX 00h, 00h 906-907 (Continuous) DDR 1_2 read (x2) HEX 00h, 00h 908-909 (Continuous) DDR 1_1 read (x2) HEX 00h, 00h 910-911 | | | | | | | | | | 876-877 (Continuous) SDR 1_4_4 read (Quad) HEX 00h, 00h 878-879 (Continuous) SDR 1_1_8 read (x8) HEX 00h, 00h 882-881 (Continuous) SDR 1_8 read (Octal) HEX 00h, 00h 884-885 DDR 1_1_1 read HEX 00h, 00h 884-885 DDR 1_1_1 fest read HEX 00h, 00h 888-889 DDR 1_1_2 read (x2) HEX 00h, 00h 890-891 DDR 1_2_4 read (dual) HEX 00h, 00h 894-895 DDR 1_4_4 read (Quad) HEX 00h, 00h 896-897 DDR 1_8_8 read (Octal) HEX 00h, 00h 898-899 DDR 1_8_8 read (Octal) HEX 00h, 00h 898-899 DDR 1_8_8 read (Octal) HEX 00h, 00h 909-901 (Continuous) DDR 1_1_1 read HEX 00h, 00h 909-902-903 (Continuous) DDR 1_1_2 read (x2) HEX 00h, 00h 908-909 (Continuous) DDR 1_1_4 read (x4) HEX 00h, 00h 909-901 (Continuous) DDR 1_1_8 read (x4) HEX 00h, 00h 91 | | | | | | | | | | 878-879 (Continuous) SDR 1_18 read (x8) HEX 00h, 00h 880-881 (Continuous) SDR 1_8 8 read (Octal) HEX 00h, 00h 884-885 DDR Read ability HEX 00h, 00h 884-885 DDR 1_1 read HEX 00h, 00h 886-887 DDR 1_1 read (x2) HEX 00h, 00h 890-891 DDR 1_2 read (x2) HEX 00h, 00h 892-893 DDR 1_4 read (x4) HEX 00h, 00h 894-895 DDR 1_4 read (x4) HEX 00h, 00h 896-897 DDR 1_6 read (x8) HEX 00h, 00h 898-899 DDR 1_6 read (x8) HEX 00h, 00h 909-901 (Continuous) DDR 1_1 read HEX 00h, 00h 904-905 (Continuous) DDR 1_1 read HEX 00h, 00h 904-906 (Continuous) DDR 1_2 read (x2) HEX 00h, 00h 912-911 (Continuous) DDR 1_2 read (x2) HEX 00h, 00h 912-915 (Continuous) DDR 1_2 read (x3) HEX 00h, 00h 919-906 (Continuous) DDR 1_2 read (| | | | | | | | | | B80-881 Continuous SDR 1_8_8 read (Octal) HEX O0h, O0h | | | | | | | | | | 882-883 DDR Read ability HEX 00h, 00h 884-885 DDR 1_1_1 read HEX 00h, 00h 886-887 DDR 1_1_1 fast read HEX 00h, 00h 889-891 DDR 1_2_2 read (v2) HEX 00h, 00h 890-891 DDR 1_2_2 read (dual) HEX 00h, 00h 894-895 DDR 1_4_4 read (Quad) HEX 00h, 00h 894-895 DDR 1_8_8 read (Octal) HEX 00h, 00h 896-897
DDR 1_8_8 read (Octal) HEX 00h, 00h 900-901 (Continuous) DDR 1_1_1 read HEX 00h, 00h 900-903 (Continuous) DDR 1_1_1 read HEX 00h, 00h 904-905 (Continuous) DDR 1_2 read (v2) HEX 00h, 00h 906-907 (Continuous) DDR 1_4 read (v2) HEX 00h, 00h 908-909 (Continuous) DDR 1_4 read (v2) HEX 00h, 00h 908-901 (Continuous) DDR 1_4 read (v2) HEX 00h, 00h 909-902 (Continuous) DDR 1_8 read (v3) HEX 00h, 00h 912-911 (Cont | | | | | | | | | | 884-885 DDR 1_1_1 read HEX 00h, 00h 886-887 DDR 1_1_1 flast read HEX 00h, 00h 886-889 DDR 1_1_2 read (x2) HEX 00h, 00h 890-891 DDR 1_2 read (dual) HEX 00h, 00h 892-893 DDR 1_1 read (x4) HEX 00h, 00h 894-895 DDR 1_4 read (Quad) HEX 00h, 00h 898-899 DDR 1_8 read (Octal) HEX 00h, 00h 900-901 (Continuous) DDR 1_1_1 read HEX 00h, 00h 900-905 (Continuous) DDR 1_1_2 read (x2) HEX 00h, 00h 908-907 (Continuous) DDR 1_1_2 read (x2) HEX 00h, 00h 908-909 (Continuous) DDR 1_1_4 read (x4) HEX 00h, 00h 908-909 (Continuous) DDR 1_1_4 read (x4) HEX 00h, 00h 910-911 (Continuous) DDR 1_1_4 read (x4) HEX 00h, 00h 910-907 (Continuous) DDR 1_1_4 read (x4) HEX 00h, 00h 910-911 (Continuous) DDR 1_2_4 read (x4) HEX 00h, 00h 912-913 </td <td></td> <td></td> <td></td> <td></td> | | | | | | | | | | 886-887 DDR 1_1_fast read HEX 00h, 00h 888-889 DDR 1_2_read (x2) HEX 00h, 00h 892-893 DDR 1_2_read (dual) HEX 00h, 00h 892-893 DDR 1_4_read (x4) HEX 00h, 00h 894-895 DDR 1_4_read (x8) HEX 00h, 00h 898-897 DDR 1_8_read (x8) HEX 00h, 00h 909-901 (Continuous) DDR 1_1_read HEX 00h, 00h 900-901 (Continuous) DDR 1_1_read HEX 00h, 00h 904-905 (Continuous) DDR 1_1_read (x2) HEX 00h, 00h 904-905 (Continuous) DDR 1_1_read (x2) HEX 00h, 00h 906-907 (Continuous) DDR 1_1_read (x2) HEX 00h, 00h 908-909 (Continuous) DDR 1_1_read (x3) HEX 00h, 00h 910-911 (Continuous) DDR 1_1_read (x3) HEX 00h, 00h 912-913 (Continuous) DDR 1_1_read (x3) HEX 00h, 00h 917-918 SDR P_1_read (x3) HEX 00h, 00h 917-929 SDR 1_read (| | | | | | | | | | 888-889 DDR 1_1_2 read (x2) HEX 00h, 00h 890-891 DDR 1_2_2 read (dual) HEX 00h, 00h 894-893 DDR 1_1_4 read (x4) HEX 00h, 00h 894-895 DDR 1_4_8 read (Quad) HEX 00h, 00h 896-897 DDR 1_8_8 read (Octal) HEX 00h, 00h 896-899 DDR 1_8_8 read (Octal) HEX 00h, 00h 900-901 (Continuous) DDR 1_1_1 read HEX 00h, 00h 902-903 (Continuous) DDR 1_1_1 read HEX 00h, 00h 904-905 (Continuous) DDR 1_1_2 read (x2) HEX 00h, 00h 906-907 (Continuous) DDR 1_2_2 read (dual) HEX 00h, 00h 906-909 (Continuous) DDR 1_4_4 read (x4) HEX 00h, 00h 910-911 (Continuous) DDR 1_8 read (x8) HEX 00h, 00h 912-913 (Continuous) DDR 1_8 read (x8) HEX 00h, 00h 914-915 (Continuous) DDR 1_8 read (x8) HEX 00h, 00h 919-920 SDR 1_1_4 program load HEX 00h, 00h | | | | | | | | | | 890-891 DDR 1_2_2 read (dual) HEX 00h, 00h 892-893 DDR 1_1_4 read (y4) HEX 00h, 00h 894-895 DDR 1_4_4 read (Quad) HEX 00h, 00h 898-897 DDR 1_8_8 read (octal) HEX 00h, 00h 909-901 (Continuous) DDR 1_1 read HEX 00h, 00h 902-903 (Continuous) DDR 1_1_1 read HEX 00h, 00h 904-905 (Continuous) DDR 1_1_1 read (v2) HEX 00h, 00h 906-907 (Continuous) DDR 1_2 read (v2) HEX 00h, 00h 908-909 (Continuous) DDR 1_1 read (v4) HEX 00h, 00h 910-911 (Continuous) DDR 1_1 read (v4) HEX 00h, 00h 912-913 (Continuous) DDR 1_1 read (v4) HEX 00h, 00h 912-913 (Continuous) DDR 1_8 read (v8) HEX 00h, 00h 912-913 (Continuous) DDR 1_8 read (v8) HEX 00h, 00h 912-915 (Continuous) DDR 1_8 read (v8) HEX 00h, 00h 917-918 SDR 1_1_1 program load HEX 00h, 00h | | | | | | | | | | 892-893 DDR 1_4 ead (x4) HEX 00h, 00h 894-895 DDR 1_4 fead (Quad) HEX 00h, 00h 896-897 DDR 1_8 ead (x8) HEX 00h, 00h 896-899 DDR 1_8 ead (x8) HEX 00h, 00h 900-901 (Continuous) DDR 1_1 read HEX 00h, 00h 902-903 (Continuous) DDR 1_1 feat read HEX 00h, 00h 904-905 (Continuous) DDR 1_1 ead (x2) HEX 00h, 00h 908-909 (Continuous) DDR 1_1 ead (x4) HEX 00h, 00h 910-911 (Continuous) DDR 1_4 erad (x4) HEX 00h, 00h 912-913 (Continuous) DDR 1_8 erad (x8) HEX 00h, 00h 912-915 (Continuous) DDR 1_8 erad (x8) HEX 00h, 00h 917-918 SDR 1_1 program load HEX 00h, 00h 919-920 SDR 1_1 program load HEX 00h, 00h 917-922 Reserved HEX 00h, 00h 927-928 Reserved HEX 00h, 00h 927-926 Reserved HEX | | , | | | | | | | | 894~895 DDR 1_4_4 read (Quad) HEX 00h, 00h 896~897 DDR 1_1_8 read (x8) HEX 00h, 00h 898~899 DDR 1_8_8 read (Octal) HEX 00h, 00h 900~901 (Continuous) DDR 1_1_1 read HEX 00h, 00h 902~903 (Continuous) DDR 1_1_1 read HEX 00h, 00h 904~905 (Continuous) DDR 1_1_2 read (x2) HEX 00h, 00h 908~907 (Continuous) DDR 1_2_2 read (dual) HEX 00h, 00h 908~909 (Continuous) DDR 1_4 read (x4) HEX 00h, 00h 910~911 (Continuous) DDR 1_4 read (x4) HEX 00h, 00h 912~913 (Continuous) DDR 1_1_8 read (x8) HEX 00h, 00h 914~915 (Continuous) DDR 1_8_8 read (Octal) HEX 00h, 00h 917~918 SDR Program load ability HEX 00h, 00h 917~920 SDR 1_1_4 program load HEX 02h, 20h 921~922 Reserved HEX 00h, 00h 925~926 Reserved HEX 00h, 00h 927~928 | | | | | | | | | | 896-897 DDR 1_1_8 read (x8) HEX 00h, 00h 898-899 DDR 1_8_8 read (Octal) HEX 00h, 00h 900~901 (Continuous) DDR 1_1 read HEX 00h, 00h 902~903 (Continuous) DDR 1_1_1 fast read HEX 00h, 00h 902~903 (Continuous) DDR 1_1_2 read (x2) HEX 00h, 00h 904~905 (Continuous) DDR 1_1_2 read (x2) HEX 00h, 00h 908~907 (Continuous) DDR 1_2 read (x4) HEX 00h, 00h 910~910 (Continuous) DDR 1_4 read (x4) HEX 00h, 00h 910~911 (Continuous) DDR 1_4 read (x8) HEX 00h, 00h 912~913 (Continuous) DDR 1_8 read (x8) HEX 00h, 00h 914~915 (Continuous) DDR 1_8 read (x8) HEX 00h, 00h 917~918 SDR Program load ability HEX 03h 919~920 SDR 1_1_1 program load HEX 02h, 20h 921~922 Reserved HEX 00h, 00h 925~924 Reserved HEX 00h, 00h 927~928 | | , | | | | | | | | 898-899 DR 1_8 read (Octal) HEX 00h, 00h 900-901 (Continuous) DDR 1_1_1 read HEX 00h, 00h 902-903 (Continuous) DDR 1_1_1 fast read HEX 00h, 00h 904-905 (Continuous) DDR 1_2 read (x2) HEX 00h, 00h 906-907 (Continuous) DDR 1_2 2 read (dual) HEX 00h, 00h 908-909 (Continuous) DDR 1_2 4 read (x4) HEX 00h, 00h 910-911 (Continuous) DDR 1_4 4 read (Quad) HEX 00h, 00h 912-913 (Continuous) DDR 1_8 8 read (8) HEX 00h, 00h 914-915 (Continuous) DDR 1_8 8 read (Octal) HEX 00h, 00h 917-918 SDR 1_1 program load HEX 03h 919-920 SDR 1_1 4 program load HEX 02h, 20h 919-921 Reserved HEX 00h, 00h 923-924 Reserved HEX 00h, 00h 927-928 Reserved HEX 00h, 00h 927-928 Reserved HEX 00h, 00h 933-930 Reserved | | , | | | | | | | | 900~901 (Continuous) DDR 1_1_1 read HEX 00h, 00h 902~903 (Continuous) DDR 1_1_1 fast read HEX 00h, 00h 904~905 (Continuous) DDR 1_1_2 read (x2) HEX 00h, 00h 908~907 (Continuous) DDR 1_2_2 read (dual) HEX 00h, 00h 908~909 (Continuous) DDR 1_4 read (x4) HEX 00h, 00h 910~911 (Continuous) DDR 1_4 read (Quad) HEX 00h, 00h 912~913 (Continuous) DDR 1_4 read (x8) HEX 00h, 00h 914~915 (Continuous) DDR 1_8 read (x8) HEX 00h, 00h 916 SDR Program load ability HEX 03h 917~918 SDR 1_1_1 program load HEX 02h, 20h 919~920 SDR 1_1_4 program load (x4) HEX 32h, 20h 921~922 Reserved HEX 00h, 00h 925~926 Reserved HEX 00h, 00h 925~926 Reserved HEX 00h, 00h 931~932 Reserved HEX 00h, 00h 931~932 Reserved | | | | · | | | | | | 902-903 (Continuous) DDR 1_1_1 fast read HEX 00h, 00h 904-905 (Continuous) DDR 1_1_2 read (x2) HEX 00h, 00h 906-907 (Continuous) DDR 1_2_2 read (dual) HEX 00h, 00h 908-909 (Continuous) DDR 1_2_4 read (v4) HEX 00h, 00h 910-911 (Continuous) DDR 1_4_4 read (Quad) HEX 00h, 00h 912-913 (Continuous) DDR 1_8_8 read (x8) HEX 00h, 00h 914-915 (Continuous) DDR 1_8_8 read (Octal) HEX 00h, 00h 916 SDR Program load ability HEX 03h 917-918 SDR 1_1_1 program load HEX 02h, 20h 919-920 SDR 1_1_4 program load (x4) HEX 32h, 20h 921-922 Reserved HEX 00h, 00h 923-924 Reserved HEX 00h, 00h 925-926 Reserved HEX 00h, 00h 927-928 Reserved HEX 00h, 00h 931-932 Reserved HEX 00h, 00h 933-935 Reserved HE | | | | · | | | | | | 904-905 (Continuous) DDR 1_1_2 read (x2) HEX 00h, 00h 906-907 (Continuous) DDR 1_2_2 read (dual) HEX 00h, 00h 908-909 (Continuous) DDR 1_1_4 read (x4) HEX 00h, 00h 910-911 (Continuous) DDR 1_4_4 read (Quad) HEX 00h, 00h 912-913 (Continuous) DDR 1_1_8 read (x8) HEX 00h, 00h 914-915 (Continuous) DDR 1_8_8 read (Octal) HEX 00h, 00h 916 SDR Program load ability HEX 03h 917-918 SDR 1_1_1 program load HEX 02h, 20h 919-920 SDR 1_1_4 program load (x4) HEX 32h, 20h 921-922 Reserved HEX 00h, 00h 923-924 Reserved HEX 00h, 00h 927-928 Reserved HEX 00h, 00h 929-930 Reserved HEX 00h, 00h 931-932 Reserved HEX 00h, 00h 933 DDR Program load ability HEX 00h, 00h 934-935 Reserved HEX | | | | | | | | | | 906-907 (Continuous) DDR 1_2_2 read (dual) HEX 00h, 00h 908-909 (Continuous) DDR 1_1_4 read (x4) HEX 00h, 00h 910-911 (Continuous) DDR 1_4_4 read (Quad) HEX 00h, 00h 912-913 (Continuous) DDR 1_1_8 read (x8) HEX 00h, 00h 914-915 (Continuous) DDR 1_8_8 read (Octal) HEX 00h, 00h 916 SDR Program load ability HEX 03h 917-918 SDR 1_1_1 program load HEX 02h, 20h 919-920 SDR 1_1_4 program load (x4) HEX 32h, 20h 921-922 Reserved HEX 00h, 00h 923-924 Reserved HEX 00h, 00h 927-928 Reserved HEX 00h, 00h 929-930 Reserved HEX 00h, 00h 931-932 Reserved HEX 00h, 00h 933 DDR Program load ability HEX 00h 934-935 Reserved HEX 00h, 00h 936-937 Reserved HEX 00h, 00h <td></td> <td></td> <td></td> <td></td> | | | | | | | | | | 908-909 (Continuous) DDR 1_1_4 read (x4) HEX 00h, 00h 910-911 (Continuous) DDR 1_4_4 read (Quad) HEX 00h, 00h 912-913 (Continuous) DDR 1_1_8 read (x8) HEX 00h, 00h 914-915 (Continuous) DDR 1_8_8 read (Octal) HEX 00h, 00h 916 SDR Program load ability HEX 03h 917-918 SDR 1_1_1 program load HEX 02h, 20h 919-920 SDR 1_1_4 program load (x4) HEX 32h, 20h 921-922 Reserved HEX 00h, 00h 923-924 Reserved HEX 00h, 00h 925-926 Reserved HEX 00h, 00h 927-928 Reserved HEX 00h, 00h 929-930 Reserved HEX 00h, 00h 931-932 Reserved HEX 00h, 00h 933 DDR Program load ability HEX 00h 934-935 Reserved HEX 00h, 00h 936-937 Reserved HEX 00h, 00h | | | | | | | | | | 910-911 (Continuous) DDR 1_4_4 read (Quad) HEX 00h, 00h 912~913 (Continuous) DDR 1_1_8 read (x8) HEX 00h, 00h 914~915 (Continuous) DDR 1_8_8 read (Octal) HEX 00h, 00h 916 SDR Program load ability HEX 03h 917~918 SDR 1_1_1 program load
HEX 02h, 20h 919~920 SDR 1_1_4 program load (x4) HEX 32h, 20h 921~922 Reserved HEX 00h, 00h 923~924 Reserved HEX 00h, 00h 925~926 Reserved HEX 00h, 00h 927~928 Reserved HEX 00h, 00h 929-930 Reserved HEX 00h, 00h 931~932 Reserved HEX 00h, 00h 933 DDR Program load ability HEX 00h 934~935 Reserved HEX 00h, 00h 936~937 Reserved HEX 00h, 00h | | | | | | | | | | 912-913 (Continuous) DDR 1_1_8 read (x8) HEX 00h, 00h 914-915 (Continuous) DDR 1_8_8 read (Octal) HEX 00h, 00h 916 SDR Program load ability HEX 03h 917-918 SDR 1_1_1 program load HEX 02h, 20h 919-920 SDR 1_1_4 program load (x4) HEX 32h, 20h 921-922 Reserved HEX 00h, 00h 923-924 Reserved HEX 00h, 00h 925-926 Reserved HEX 00h, 00h 927-928 Reserved HEX 00h, 00h 929-930 Reserved HEX 00h, 00h 931-932 Reserved HEX 00h, 00h 933 DDR Program load ability HEX 00h 934-935 Reserved HEX 00h, 00h 936-937 Reserved HEX 00h, 00h | | , 11 | | | | | | | | 914~915 (Continuous) DDR 1_8_8 read (Octal) HEX 00h, 00h 916 SDR Program load ability HEX 03h 917~918 SDR 1_1_1 program load HEX 02h, 20h 919~920 SDR 1_1_4 program load (x4) HEX 32h, 20h 921~922 Reserved HEX 00h, 00h 923~924 Reserved HEX 00h, 00h 925~926 Reserved HEX 00h, 00h 927~928 Reserved HEX 00h, 00h 929~930 Reserved HEX 00h, 00h 931-932 Reserved HEX 00h, 00h 933 DDR Program load ability HEX 00h 934~935 Reserved HEX 00h, 00h 936-937 Reserved HEX 00h, 00h | | | | | | | | | | 916 SDR Program load ability HEX 03h 917~918 SDR 1_1_1 program load HEX 02h, 20h 919~920 SDR 1_1_4 program load (x4) HEX 32h, 20h 921~922 Reserved HEX 00h, 00h 923~924 Reserved HEX 00h, 00h 925~926 Reserved HEX 00h, 00h 927~928 Reserved HEX 00h, 00h 929~930 Reserved HEX 00h, 00h 931~932 Reserved HEX 00h, 00h 933 DDR Program load ability HEX 00h 934~935 Reserved HEX 00h, 00h 936-937 Reserved HEX 00h, 00h | | | | | | | | | | 917-918 SDR 1_1 program load HEX 02h, 20h 919-920 SDR 1_1 program load (x4) HEX 32h, 20h 921-922 Reserved HEX 00h, 00h 923-924 Reserved HEX 00h, 00h 925-926 Reserved HEX 00h, 00h 927-928 Reserved HEX 00h, 00h 929-930 Reserved HEX 00h, 00h 931-932 Reserved HEX 00h, 00h 933 DDR Program load ability HEX 00h 934-935 Reserved HEX 00h, 00h 936-937 Reserved HEX 00h, 00h | | | | | | | | | | 919-920 SDR 1_1_4 program load (x4) HEX 32h, 20h 921-922 Reserved HEX 00h, 00h 923-924 Reserved HEX 00h, 00h 925-926 Reserved HEX 00h, 00h 927-928 Reserved HEX 00h, 00h 929-930 Reserved HEX 00h, 00h 931-932 Reserved HEX 00h, 00h 933 DDR Program load ability HEX 00h 934-935 Reserved HEX 00h, 00h 936-937 Reserved HEX 00h, 00h | | , | | | | | | | | 921~922 Reserved HEX 00h, 00h 923~924 Reserved HEX 00h, 00h 925~926 Reserved HEX 00h, 00h 927~928 Reserved HEX 00h, 00h 929~930 Reserved HEX 00h, 00h 931~932 Reserved HEX 00h, 00h 933 DDR Program load ability HEX 00h 934~935 Reserved HEX 00h, 00h 936-937 Reserved HEX 00h, 00h | | | | | | | | | | 923-924 Reserved HEX 00h, 00h 925-926 Reserved HEX 00h, 00h 927-928 Reserved HEX 00h, 00h 929-930 Reserved HEX 00h, 00h 931~932 Reserved HEX 00h, 00h 933 DDR Program load ability HEX 00h 934~935 Reserved HEX 00h, 00h 936-937 Reserved HEX 00h, 00h | | | | | | | | | | 925-926 Reserved HEX 00h, 00h 927-928 Reserved HEX 00h, 00h 929-930 Reserved HEX 00h, 00h 931~932 Reserved HEX 00h, 00h 933 DDR Program load ability HEX 00h 934~935 Reserved HEX 00h, 00h 936~937 Reserved HEX 00h, 00h | | Reserved | | | | | | | | 927-928 Reserved HEX 00h, 00h 929-930 Reserved HEX 00h, 00h 931~932 Reserved HEX 00h, 00h 933 DDR Program load ability HEX 00h 934~935 Reserved HEX 00h, 00h 936~937 Reserved HEX 00h, 00h | | | | · | | | | | | 929-930 Reserved HEX 00h, 00h 931~932 Reserved HEX 00h, 00h 933 DDR Program load ability HEX 00h 934~935 Reserved HEX 00h, 00h 936~937 Reserved HEX 00h, 00h | 927~928 | | | | | | | | | 931~932 Reserved HEX 00h, 00h 933 DDR Program load ability HEX 00h 934~935 Reserved HEX 00h, 00h 936~937 Reserved HEX 00h, 00h | | | | | | | | | | 933 DDR Program load ability HEX 00h 934~935 Reserved HEX 00h, 00h 936~937 Reserved HEX 00h, 00h | | | | | | | | | | 934~935 Reserved HEX 00h, 00h 936~937 Reserved HEX 00h, 00h | | | | | | | | | | 936~937 Reserved HEX 00h, 00h | | | | | | | | | | | | Reserved | | | | | | | | and | 938~939 | Reserved | HEX | 00h, 00h | | | | | | 940~941 | Reserved | HEX | 00h, 00h | |-----------|---|-------|--| | 940~941 | Reserved | | · | | | | HEX | 00h, 00h | | 944~945 | Reserved | HEX | 00h, 00h | | 946~947 | Reserved | HEX | 00h, 00h | | 948~949 | Reserved | HEX | 00h, 00h | | 950 | SDR Random program load ability | HEX | 03h | | 951~952 | SDR 1_1_1 random program load | HEX | 84h, 20h | | 953~954 | SDR 1_1_4 random program load | HEX | C4h, 20h | | 955~956 | Reserved | HEX | 00h, 00h | | 957~958 | Reserved | HEX | 00h, 00h | | 959~960 | Reserved | HEX | 00h, 00h | | 961~962 | Reserved | HEX | 00h, 00h | | 963~964 | Reserved | HEX | 00h, 00h | | 965~966 | Reserved | HEX | 00h, 00h | | 967 | DDR Random program load ability | HEX | 00h | | 968~969 | Reserved | HEX | 00h, 00h | | 970~971 | Reserved | HEX | 00h, 00h | | 972~973 | Reserved | HEX | 00h, 00h | | 974~975 | Reserved | HEX | 00h, 00h | | 976~977 | Reserved | HEX | 00h, 00h | | 978~979 | Reserved | HEX | 00h, 00h | | 980~981 | Reserved | HEX | 00h, 00h | | 982~983 | Reserved | HEX | 00h, 00h | | 984 | OOB overall layout | HEX | 01h | | | OOB free layout | | | | | OOB free start | HEX | 00h | | 985~987 | OOB free length | HEX | 12h | | | BBM (bad block mark) length | HEX | 02h | | | ECC parity layout | | | | | ECC parity start | HEX | 48h | | 988~990 | ECC parity space | HEX | 0Eh | | | ECC parity (real) length | HEX | 0Dh | | 991~1001 | Advanced ECC status CMD0 (higher bit) | HEX | 00h, 00h, 00h, 00h, 00h, 00h, 00h, 00h, | | 1002~1012 | Advanced ECC status CMD1 (lower bit) | HEX | 0Fh, C0h, 01h, 00h, 00h, 00h, 00h, 00h, 04h, 02h | | 1013 | ECC no error status | HEX | 00h | | 1014 | ECC uncorrectable status | HEX | 04h | | 1015~1016 | If correctable bit flips happen (return ECC max if number exceeds ECC max capability) | HEX | 02h, 02h | | 1017~1021 | Reserved | HEX | 00h, 00h, 00h, 00h, 00h | | 1022~1023 | CRC | ASCII | (SEE THE Note2) | | 1024~1279 | Value of Address 768~1023 | HEX | Same as address 768~1023 | | 1280~1535 | Value of Address 768~1023 | HEX | Same as address 768~1023 | | 1536~ | Additional redundant parameter pages | HEX | ALL FFh | | N-4- O. | , taataona, roddiiddiit paramotor pagos | TIEA | | #### Note 2: The CRC shall be calculated using the following 16-bit generator polynomial : $G(X) = X^{16} + X^{15} + X^2 + 1$ The CRC calculation covers all of data between byte 768 and byte 1021 of the parameter page inclusive. This polynomial in hex may be represented as 8005h. The CRC value shall be initialized with a value of 43h, 41h before the calculation begins. ### 12 Block Protection The block lock feature provides the ability to protect the entire device, or ranges of blocks, from the PROGRAM and ERASE commands. After power-up, the device is in the "locked" state, i.e., feature bits BP0, BP1 and BP2 are set to 1, INV, CMP and BRWD are set to 0. Some block operations relating to the block protection are listed as follows: - SET FEATURE command must be issued to alter the state of protection feature bit. - When BRWD is set and WP# is LOW, none of the writable protection feature bits can be set. - When a PROGRAM/ERASE command is issued to a locked block, status bit OIP in status register (C0H) remains 0. The status register (C0H) will return 08H when a PROGRAM command is issued to program a locked block. The status register (C0H) will return 04H when an ERASE command is issued to erase a locked block. - When WP# is not LOW, user can issue SET FEATURE command and use the protection register (A0H) and the block protect bits table below to alter the protection rows. Confidential -37 / 47- Rev.1.0 July, 2025 **Table 12-1. Block Protection Bits Table** | СМР | INV | BP2 | BP1 | BP0 | Protect Rows | |-----|-----|-----|-----|-----|----------------------| | Х | Х | 0 | 0 | 0 | All unlocked | | 0 | 0 | 0 | 0 | 1 | Upper 1/64 locked | | 0 | 0 | 0 | 1 | 0 | Upper 1/32 locked | | 0 | 0 | 0 | 1 | 1 | Upper 1/16 locked | | 0 | 0 | 1 | 0 | 0 | Upper 1/8 locked | | 0 | 0 | 1 | 0 | 1 | Upper 1/4 locked | | 0 | 0 | 1 | 1 | 0 | Upper 1/2 locked | | Х | Х | 1 | 1 | 1 | All locked (Default) | | 0 | 1 | 0 | 0 | 1 | Lower 1/64 locked | | 0 | 1 | 0 | 1 | 0 | Lower 1/32 locked | | 0 | 1 | 0 | 1 | 1 | Lower 1/16 locked | | 0 | 1 | 1 | 0 | 0 | Lower 1/8 locked | | 0 | 1 | 1 | 0 | 1 | Lower 1/4 locked | | 0 | 1 | 1 | 1 | 0 | Lower 1/2 locked | | 1 | 0 | 0 | 0 | 1 | Lower 63/64 locked | | 1 | 0 | 0 | 1 | 0 | Lower 31/32 locked | | 1 | 0 | 0 | 1 | 1 | Lower 15/16 locked | | 1 | 0 | 1 | 0 | 0 | Lower 7/8 locked | | 1 | 0 | 1 | 0 | 1 | Lower 3/4 locked | | 1 | 0 | 1 | 1 | 0 | Block 0 | | 1 | 1 | 0 | 0 | 1 | Upper 63/64 locked | | 1 | 1 | 0 | 1 | 0 | Upper 31/32 locked | | 1 | 1 | 0 | 1 | 1 | Upper 15/16 locked | | 1 | 1 | 1 | 0 | 0 | Upper 7/8 locked | | 1 | 1 | 1 | 0 | 1 | Upper 3/4 locked | | 1 | 1 | 1 | 1 | 0 | Block 0 | # 13 Status Register The content of status register can be read by issuing the GET FEATURE (0FH) command, followed by the status register address C0H. The meaning of each bit in status register is listed as follows: Table 13-1. Status Register Bit Description | Bit | Name | Description | |--------------|-----------------------|--| | | | This bit indicates that a program failure has occurred. It will also be set if the | | P FAIL | 5 5 7 | user attempts to program an invalid address or a protected region, including the | | P_FAIL | Program Fail | OTP area. This bit is cleared during the PROGRAM EXECUTE command | | | | sequence or a RESET command. | | | | This bit indicates that an erase failure has occurred. It will also be set
if the user | | E_FAIL | Erase Fail | attempts to erase a locked region. This bit is cleared at the start of the BLOCK | | | | ERASE command sequence or the RESET command. | | | | This bit indicates that the current status of the write enable latch(WEL) and must | | WEL | Write Enable Latch | be set (WEL = 1), prior to issuing a PROGRAM EXECUTE or BLOCK ERASE | | VVEL | | command. It is set by issuing the WRITE ENABLE command. WEL can also be | | | | disabled (WEL = 0), by issuing the WRITE DISABLE command. | | | | This bit is set when a PROGRAM EXECUTE, PAGE READ, BLOCK ERASE or | | OIP | Operation In Progress | RESET command is executing, indicating the device is busy. When the bit is 0, | | | | the interface is in the ready state. | | | | This bit provides ECC status as follows: | | | | 00b = No bit errors were detected | | | | 01b = bit error was detected and corrected | | | | 10b = bit error was detected and not corrected | | ECCS1, ECCS0 | ECC Status | 11b = bit error was detected and corrected, error bit number = ECC max which | | | | is according to extended register. | | | | ECCS is set to 00b either following a RESET, or at the beginning of the READ. It | | | | is then updated after the device completes a valid operation. After power-on | | | | RESET, ECC status is set to reflect the contents of block 0, page 0. | Notes: The ECC status of register C0H will be cleared when ECC is disabled. ## 14 Block Management A NAND Flash device is specified to have a minimum number of valid blocks of the total available blocks per die, which means the devices may have blocks that are invalid when shipped from the factory. The factory identifies invalid blocks before shipping by attempting to program the bad-block mark into every location in the first page of each invalid block. It may not be possible to program every location in an invalid block with the bad-block mark but the first spare area location in each bad block is guaranteed to contain the bad-block mark. System software should initially check the first spare area location for non-FFh data on the first page of each block prior to performing any program or erase operations on the NAND Flash device. Table 14-1. Valid Block Information | Total available blocks | 8192 | | |--------------------------------|---------|--| | Minimum number of valid blocks | 8032 | | | The bad block mark | All 00h | | Confidential -40 / 47- Rev.1.0 July, 2025 ## 15 Power-On Process When the chip reached the power on level, the internal power on reset signal will be released. The device can response host commands after tPUW (Max 4ms). The host should issue GET FEATURE (0Fh). The device will use the OIP bit in the status register to inform the host that initialization in power-on process is completed. Setting OIP bit to 1 indicates that the device is still initializing. Setting the OIP bit to 0 indicates that the power on process is finished. If OIP bit is 1, the host will repeatedly issues GET FEATURE (0Fh) command to monitor the power-on process until the OIP bit is set to 0. Figure 15-1. Power-On Process Table 15-1. Power-On Process Parameters | Parameters | Symbol | Min | Typical | Max | Unit | | |--------------------------------------|--------|------|---------|-----|------|----| | VCC (min) to CS# Low | tVSL | 50 | - | 500 | us | | | Time Delay Before Read/Write Instruc | tion | tPUW | - | 3 | 4 | ms | | Write Inhibit Threshold Voltage | 3.3V | vWI | 2.5 | - | - | V | Confidential -41 / 47- Rev.1.0 July, 2025 ## **16 Electrical Characteristics** Table 16-1. SPI NAND DC Characteristics | Parameters | Symbol | Min | Typical | Max | Unit | |--------------------------------------|--------|-----------|---------|-----------|------| | SPI Supply Voltage | vcc | 3.0 | 3.3 | 3.6 | V | | VCC standby current | ISB | | | 120 | uA | | VCC active current (sequential read) | ICC1 | | 25 | 30 | mA | | VCC active current (Program) | ICC2 | | 25 | 30 | mA | | VCC active current (Erase) | ICC3 | | 25 | 30 | mA | | Input low level | V_IL | -0.3 | | 0.2 x VCC | V | | Input high level | V_IH | 0.8 x VCC | | VCC + 0.3 | V | | Output High Voltage | V_OH | VCC - 0.2 | | | V | | Output Low Voltage | V_OL | | | 0.2 | V | | Input Leakage Current | I_LI | | | ±10 | uA | | Output Leakage Current | I_LO | | | ±10 | uA | ### **Table 16-2. Capacitance Characteristics** | Parameters | Symbol | Min | Typical | Max | Unit | Condition | |--------------------------|--------|-----|---------|-----|------|-----------| | Input Capacitance | CIN | | | 3.5 | pF | VIN=0V | | Output Capacitance | COUT | | - | 3.5 | pF | VOUT=0V | | Load Capacitance | CL | | 10 | | pF | | | Input Rise and Fail time | | | | 5 | ns | | Confidential -42 / 47- Rev.1.0 July, 2025 Table 16-3. AC Time Characteristics ($T_A = -40 \sim 85^{\circ}C$, $C_L = 10 pF$) | Table to divide time characteriones (14 to 60 d, 61 topin) | | | | | | | | | |--|--------|------|---------|-----|------|--|--|--| | Parameters | Symbol | Min | Typical | Max | Unit | | | | | Clock Frequency | FC | | | 120 | MHz | | | | | Page Program Time | tPROG | | 610 | 750 | us | | | | | Page Read Time | tRD | - | 270 | - | us | | | | | Clock High Time | tCLH | 4.16 | | | ns | | | | | Clock Low Time | tCLL | 4.16 | | | ns | | | | | Command deselect Time | tSHSL | 20 | | | ns | | | | | CS# Setup Time | tSLCH | 4 | | | ns | | | | | CS# Hold Time | tCHSL | 4 | | | ns | | | | | Data In Setup Time | tDVCH | 2 | | | ns | | | | | Data In Hold Time | tCHDX | 4 | | | ns | | | | | Output Hold time | tCLQX | 2.7 | | | ns | | | | | Clock to output Valid | tCLQV | | | 7.5 | ns | | | | | CS# High to Output Invalid | tSHQZ | | | 4 | ns | | | | | CS# Active Hold time relative to SCLK | tCHSH | 4 | | | ns | | | | | CS# Not Active Setup time relative to SCLK | tSHCH | 4 | | | ns | | | | | Hold# hold time relative to SCLK | tCH | 5 | | | ns | | | | | Hold# non-active hold time relative to SCLK | tCD | 5 | | | ns | | | | | Hold# setup time relative to SCLK | tHD | 5 | | | ns | | | | | Hold# non-active setup time relative to SCLK | tHC | 5 | | | ns | | | | | Hold# to output High-Z | tHZ | | | 10 | ns | | | | | Hold# to output Low-Z | tLZ | | | 10 | ns | | | | | WP# setup time | tWPS | 20 | | | ns | | | | | WP# hold time | tWPH | 100 | | | ns | | | | Figure 16-1. Serial Input Timing Figure 16-2. Serial Output Timing Figure 16-3. Hold# Timing Figure 16-4. WP# Timing Confidential -44 / 47- Rev.1.0 July, 2025 # 17 Package Outline Information Table 17-1. LGA (8 x 6 x 0.8mm) Dimension Table | Symbol | Dimension (MM) | | | Dimension (MIL) | | | |--------|----------------|-------|-------|-----------------|---------|---------| | | Min | Nom | Max | Min | Nom | Max | | Α | 0.700 | 0.750 | 0.800 | 27.559 | 29.528 | 31.496 | | (A1) | 0.500 | 0.550 | 0.600 | 19.685 | 21.654 | 23.622 | | A2 | - | 0.210 | - | - | 8.268 | - | | b | 0.350 | 0.400 | 0.480 | 13.780 | 15.748 | 18.898 | | D | 7.900 | 8.000 | 8.100 | 311.023 | 314.960 | 318.897 | | E | 5.900 | 6.000 | 6.100 | 232.283 | 236.220 | 240.157 | | е | 1.270 | | | 50.000 | | | | Ĺ | 0.450 | 0.500 | 0.550 | 17.717 | 19.685 | 21.654 | Figure 17-1. LGA (8 x 6 x 0.8mm) Package Outline Drawing Information Alliance Memory, Inc. 12815 NE 124th Street Suite D Kirkland, WA 98034 Tel: 425-898-4456 Fax: 425-896-8628 www.alliancememory.com Copyright © Alliance Memory All Rights Reserved © Copyright 2007 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.