

Revision History 5V 1Mb (128K x 8) FAST Asynchronous SRAM, rev.D

Revision	Details	Date
Rev 1.0	Initial Release	March. 2025
Rev 1.1	Added AS7C1024D-12JIN (400mils SOJ) Part	December, 2025

Confidential -1 / 12- December. 2025

FEATURES

Fast access time : 12nsLow power consumption:

Operating current : 50 (TYP.) Standby

current : 1mA (TYP.)

■ Single 4.5V ~ 5.5V power supply

■ All inputs and outputs TTL compatible

Fully static operationTri-state output

■ Data retention voltage : 2.0V (MIN.)

■ Packages:

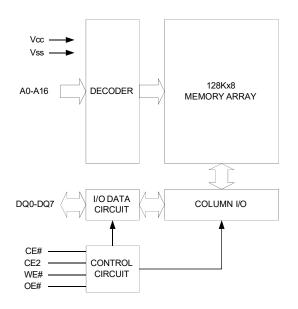
32-pin 300mils SOJ32-pin 400mils SOJ

GENERAL DESCRIPTION

The AS7C1024D is a 1,048,576-bit Low power CMOS FAST static random access memory organized as 131,072 words by 8 bits. It is fabricated using very high performance, high reliability CMOS technology. Its standby current is stable within the range of operating temperature.

The AS7C1024D is well designed for very high speed system applications, and particularly well suited for battery back-up nonvolatile memory application.

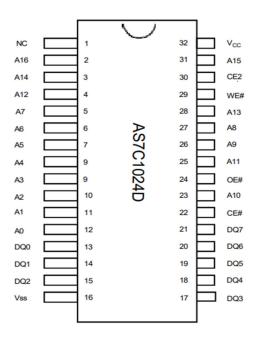
The AS7C1024D operates from a single power supply of $4.5V \sim 5.5V$ and all inputs and outputs are fully TTL compatible


ORDERING INFORMATION

Product	Package	Operating Temperature	V _{cc} Range	Speed	Power Dis	sipation
					Standby (I _{SB1} ,TYP.)	Operating (Icc,TYP.)
AS7C1024D-12TJIN	32p SOJ (300mils)	-40 ~ 85℃	4.5 ~ 5.5V	12ns	1mA	50mA
AS7C1024D-12JIN	32p SOJ (400mls)	-40 ~ 85°C	4.5 ~ 5.5V	12ns	1mA	50mA

Confidential -2 / 12- December. 2025

FUNCTIONAL BLOCK DIAGRAM



PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 - A16	Address Inputs
DQ0 - DQ7	Data Inputs/Outputs
CE#, CE2	Chip Enable Inputs
WE#	Write Enable Input
OE#	Output Enable Input
V_{CC}	Power Supply
Vss	Ground
NC	No Connection

Confidential -3 / 12- December. 2025

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Voltage on V _{CC} relative to V _{SS}	V _{T1}	-0.5 to 6.5	V
Voltage on any other pin relative to V _{SS}	V _{T2}	-0.5 to V _{CC} +0.5	V
Operating Temperature	TA	-40 to 85	°C
Storage Temperature	T _{STG}	-65 to 150	°C
Power Dissipation	P _D	1	W
DC Output Current	Гоит	50	mA

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

TRUTH TABLE

MODE	CE#	CE2	OE#	WE#	I/O OPERATION	SUPPLY CURRENT
Standby	Н	Х	Χ	Х	High-Z	I_{SB},I_{SB1}
Standby	Х	L	Х	Х	High-Z	I_{SB},I_{SB1}
Output Disable	L	Н	Н	Н	High-Z	Icc
Read	L	Н	L	Н	D _{OUT}	I _{CC}
Write	L	Н	Х	L	D _{IN}	Icc

Note: $H = V_{IH}$, $L = V_{IL}$, X = Don't care.

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.*4	MAX.	UNIT
Supply Voltage	Vcc		4.5	5.0	5.5	V
Input High Voltage	V _{IH} ^{^1}		2.4	-	Vcc+0.5	V
Input Low Voltage	V _{IL} ²		- 0.5	-	0.8	V
Input Leakage Current	ILI	$V_{CC} \ge V_{IN} \ge V_{SS}$	- 1	-	1	Α
Output Leakage Current	ILO	$V_{CC} \ge V_{OUT} \ge V_{SS,}$ Output Disabled	- 1	-	1	Α
Output High Voltage	V _{OH}	I _{OH} = -4mA	2.4	-	-	V
Output Low Voltage	Vol	I _{OL} = 8mA	-	-	0.4	V
Average Operating Power supply Current	I _{cc}	Cycle time = MIN. CE# = V_{IL} and CE2 = V_{IH} , $I_{I/O}$ = 0mA Others at V_{IL} or V_{IH}	-	50	80	mA
Standby Power	I _{SB}	CE# = V _{IH} or CE2 = V _{IL} Others at V _{IL} or V _{IH}	-	3	20	mA
Supply Current	I _{SB1}	CE# \geq V _{CC} -0.2V or CE2 \leq 0.2V	-	1	5	mA

- 1. $V_{IH}(max) = V_{CC} + 3.0V$ for pulse width less than 10ns. 2. $V_{IL}(min) = Vss 3.0V$ for pulse width less than 10ns.
- 3. Over/Undershoot specifications are characterized, not 100% tested.

CAPACITANCE ($T_A = 25^{\circ}C$, f = 1.0 MHz)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
Input Capacitance	Cin	-	6	pF
Input/Output Capacitance	C _{I/O}	-	8	pF

Note: These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

Input Pulse Levels	0.2V to Vcc - 0.2V
Input Rise and Fall Times	3ns
Input and Output Timing Reference Levels	1.5V
Output Load	$C_L = 30pF + 1TTL$, $I_{OH}/I_{OL} = -4mA/8mA$

December. 2025 Confidential -5 / 12-

^{4.} Typical values are included for reference only and are not guaranteed or tested. Typical valued are measured at $V_{CC} = V_{CC}(TYP.)$ and $T_A = 25^{\circ}C$

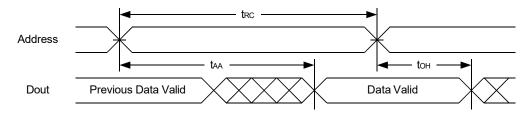
ALLIANCE AS7C1024D-12TJIN / 12JIN

AC ELECTRICAL CHARACTERISTICS

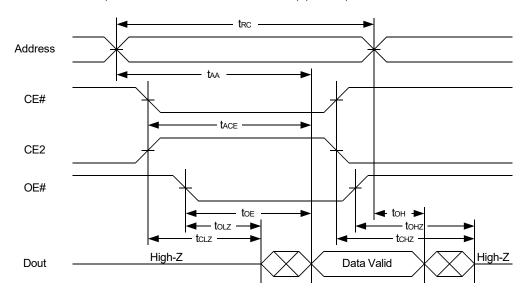
(1) READ CYCLE

PARAMETER	SYM.	AS7C10)24D-12	UNIT
PARAIVIETER	STIVI.	MIN.	MAX.	UNII
Read Cycle Time	t _{RC}	12	-	ns
Address Access Time	taa	-	12	ns
Chip Enable Access Time	t _{ACE}	-	12	ns
Output Enable Access Time	t _{OE}	-	6	ns
Chip Enable to Output in Low-Z	t _{CLZ} *	3	-	ns
Output Enable to Output in Low-Z	t _{OLZ} *	0	-	ns
Chip Disable to Output in High-Z	t _{CHZ} *	-	6	ns
Output Disable to Output in High-Z	t _{OHZ} *	-	6	ns
Output Hold from Address Change	tон	3	•	ns

(2) WRITE CYCLE

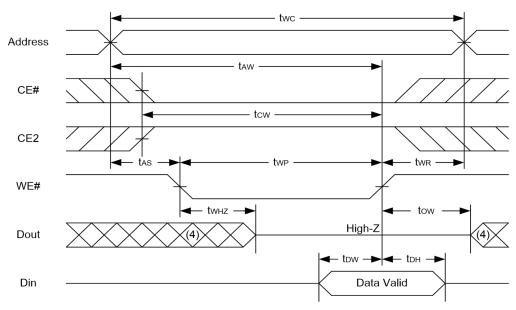

DADAMETED	CVM	AS7C10)24D-12	LINUT
PARAMETER	SYM.	MIN.	MAX.	UNIT
Write Cycle Time	t _{WC}	12	-	ns
Address Valid to End of Write	t _{AW}	10	-	ns
Chip Enable to End of Write	t _{CW}	10	-	ns
Address Set-up Time	tas	0	-	ns
Write Pulse Width	twp	9	-	ns
Write Recovery Time	t _{WR}	0	-	ns
Data to Write Time Overlap	t _{DW}	7	-	ns
Data Hold from End of Write Time	t _{DH}	0	-	ns
Output Active from End of Write	t _{OW} *	3	-	ns
Write to Output in High-Z	twHZ*	-	7	ns

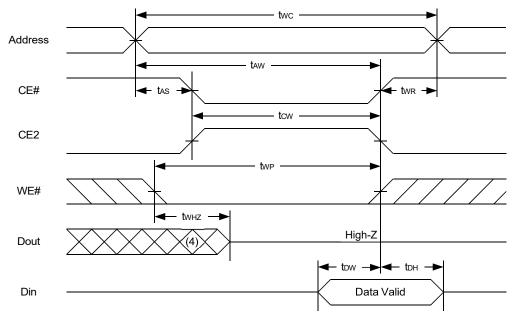
^{*}These parameters are guaranteed by device characterization, but not production tested.



TIMING WAVEFORMS

READ CYCLE 1 (Address Controlled) (1,2)


READ CYCLE 2 (CE# and CE2 and OE# Controlled) (1,3,4,5)


Notes:

- 1. WE# is high for read cycle.
- 2. Device is continuously selected OE# = low, CE# = low., CE2 = high.
- 3. Address must be valid prior to or coincident with CE# = low, CE2 = high; otherwise t_{AA} is the limiting parameter.
- $4.t_{CLZ}$, t_{OLZ} , t_{CHZ} and t_{OHZ} are specified with C_L = 5pF. Transition is measured ± 500 mV from steady state.
- 5.At any given temperature and voltage condition, t_{CHZ} is less than t_{CLZ} , t_{OHZ} is less than t_{OLZ} .

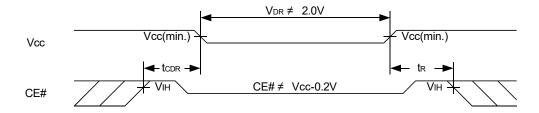
WRITE CYCLE 1 (WE# Controlled) (1,2,4,5)

WRITE CYCLE 2 (CE# and CE2 Controlled) (1,4,5)

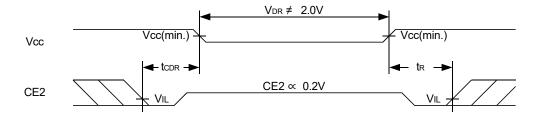
Notes :

- 1. A write occurs during the overlap of a low CE#, high CE2, low WE#.
- 2. During a WE# controlled write cycle with OE# low, t_{WP} must be greater than t_{WHZ} + t_{DW} to allow the drivers to turn off and data to be placed on the bus.
- 3. During this period, I/O pins are in the output state, and input signals must not be applied.
- 4. If the CE# low transition and CE2 high transition occurs simultaneously with or after WE# low transition, the outputs remain in a high impedance state.
- 5. t_{OW} and t_{WHZ} are specified with C_L = 5pF. Transition is measured ±500mV from steady state.

Confidential -8 / 12- December. 2025


DATA RETENTION CHARACTERISTICS

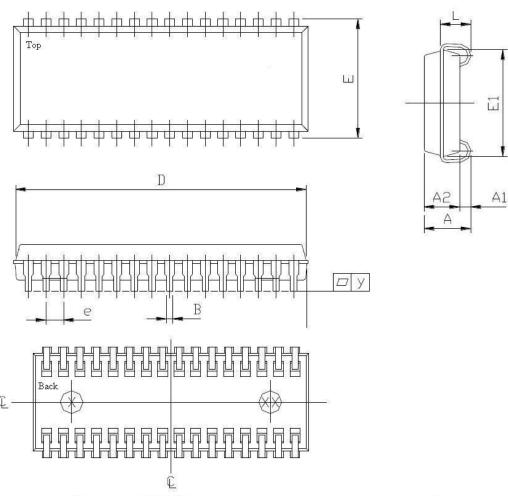
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
V _{CC} for Data Retention	V_{DR}	CE# \geq Vcc - 0.2V or CE2 \leq 0.2V	2.0	-	5.5	V
Data Retention Current		V_{CC} = 2.0V CE# \geq V _{CC} - 0.2V or CE2 \leq 0.2V	-	0.01	3	mA
Chip Disable to Data Retention Time	t _{CDR}	See Data Retention Waveforms (below)	0	-	-	ns
Recovery Time	t_R		t _{RC*}	-	-	ns


 $t_{\mathsf{RC}^*} = \mathsf{Read}\;\mathsf{Cycle}\;\mathsf{Time}$

DATA RETENTION WAVEFORM

Low Vcc Data Retention Waveform (1) (CE# controlled)

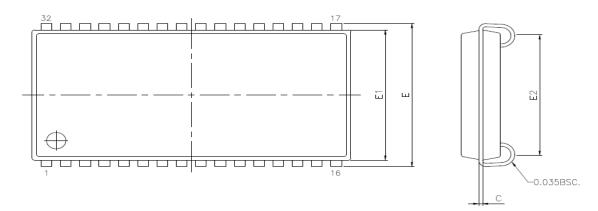
Low Vcc Data Retention Waveform (2) (CE2 controlled)

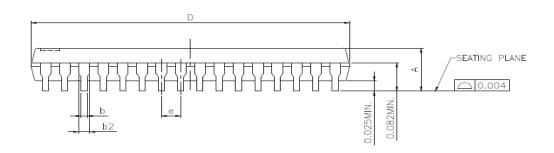


Confidential -9 / 12- December. 2025

PACKAGE OUTLINE DIMENSION

32-pin 300mil SOJ Package Outline Dimension




UNIT SYMBOL	INCH(BASE)	MM(REF)
Α	0.148(MAX)	3.759(MAX)
A1	0.025(MIN)	0.635(MIN)
A2	0.123(MAX)	3.124(MAX)
В	0.018(TYP)	0.457(TYP)
D	0.825±0.005	20.955±0.127
E	0.335(TYP)	8.509(TYP)
E1	0.300±0.005	7.620±0.127
е	0.050(TYP)	1.270(TYP)
L	0.086±0.010	2.184±0.254
у	0.003(MAX)	0.076(MAX)

Confidential -10 / 12- December. 2025

PACKAGE OUTLINE DIMENSION

32-pin 400mil SOJ Package Outline Dimension

SYMBOL	SPEC					
STIVIBUL	Min	Nom	Max.			
A	0.128	-	0.148			
b	0.015	-	0.02			
b2	0.026	-	0.032			
с	0.007	-	0.013			
e	0.050 Typ					
D	0.820	-	0.83			
E	0.435	-	0.445			
E1	0.395	-	0.405			
E2	0.360	-	0.38			

Unit: Inch

Part numbering system

AS7C	1024D	–XX	XX	X	X	XX
SRAM prefix	Device number 1024: 1M (x8) D: revision D	Access time -12 = 12ns	Package: TJ = SOJ 300mils J = SOJ 400mils	range.	N=Lead Free and Halogen Free Part	Packing Type None: Tray TR: Reel

Alliance Memory, Inc. 12815 NE 124th Street Suite D Kirkland, WA 98034

Fax: 425-896-8628 www.alliancememory.com

Tel: 425-898-4456

Copyright © Alliance Memory All Rights Reserved

© Copyright 2007 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any quarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life -supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.