

32Gb (2G x 16) DDR4 SDRAM

AS4C2G16D4 - 128 Meg x 16 x 16 Banks x 1 Ranks

Revision History

Revision	Details	Date
Rev 1.0	Initial Release	Sept. 2024

Description

The 32Gb Dual Die DDR4 SDRAM uses

16Gb DDR4 SDRAM die; two x8s combined to make one x16. It uses similar signals as the mono x16, and there is one extra ZQ connection for faster ZQ calibration and a BG1 control required for x8 addressing. Refer to Alliance's 16Gb DDR4 SDRAM data sheet (x8 option) for the specifications not included in this document.

Features

- Uses two x8 16Gb die to make one x16
- Single-rank DualDie
- $V_{DD} = V_{DDQ} = 1.2V (1.14 1.26V)$
- 1.2V V_{DDQ}-terminated I/O
- JEDEC-standard ball-out
- Low-profile package

Features

- $T_C = 0^\circ C$ to $95^\circ C$
 - -0° C to 85°C: 8192 refresh cycles in 64ms
 - 85°C to 95°C: 8192 refresh cycles in 32ms

Options

Configuration
 - 128 Meg x 16 x 16 banks x 1 rank
 2G16

Marking

- 96-ball FBGA package (Pb-free) - 7.5mm x 13mm x 1.2mm
 Timing - cycle time¹
- -0.625ns @ CL = 22 (DDR4-3200) -62
- Self refresh
 Standard
 None
- Operating temperature – Commercial ($0^{\circ}C \le T_C \le 95^{\circ}C$) None

Table 1: Key Timing Parameters

Speed Grade ¹	Data Rate (MT/s)	Target CL- n RCD- n RP	^t AA (ns)	^t RCD (ns)	^t RP (ns)
-62	3200	22-22-22	13.75	13.75	13.75

Notes: 1. Refer to Speed Bin Tables for additional details.

Table 2: Ordering Information

Product part No	Org	Temperature Tc	Max Clock (MHz)	Package
AS4C2G16D4-62BCN	2G x 16	Commercial 0°C to 95°C	1600	96-ball FBGA 7.5x13mm

Table 3: Addressing

Parameter	2048 Meg x 16
Configuration	128 Meg x 16 x 16 banks x 1 rank
Bank group address	BG[1:0]
Bank count per group	4
Bank address in bank group	BA[1:0]
Row addressing	128K (A[16:0])
Column addressing	1K (A[9:0])
Page size	1KB

Notes: 1. Page size is per bank, calculated as follows:

Page size = 2^{COLBITS} × ORG/8, where COLBIT = the number of column address bits and ORG = the number of DQ bits.

Important Notes and Warnings

Alliance Memory Inc. ("Alliance") reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions. This document supersedes and replaces all information supplied prior to the publication hereof. You may not rely on any information set forth in this document if you obtain the product described herein from any unauthorized distributor or other source not authorized by Alliance.

Automotive Applications. Products are not designed or intended for use in automotive applications unless specifically designated by Alliance as automotive-grade by their respective data sheets. Distributor and customer/distributor shall assume the sole risk and liability for and shall indemnify and hold Alliance harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting directly or indirectly from any use of non-automotive-grade products in automotive applications. Customer/distributor shall ensure that the terms and conditions of sale between customer/distributor and any customer of distributor/customer (1) state that Alliance products are not designed or intended for use in automotive applications unless specifically designated by Alliance as automotive-grade by their respective data sheets and (2) require such customer of distributor/customer to indemnify and hold Alliance harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting from any use of non-automotive-grade products in automotive applications.

Critical Applications. Products are not authorized for use in applications in which failure of the Alliance component could result, directly or indirectly in death, personal injury, or severe property or environmental damage ("Critical Applications"). Customer must protect against death, personal injury, and severe property and environmental damage by incorporating safety design measures into customer's applications to ensure that failure of the Alliance component will not result in such harms. Should customer or distributor purchase, use, or sell any Alliance component for any critical application, customer and distributor shall indemnify and hold harmless Alliance and its subsidiaries, subcontractors, and affiliates and the directors, officers, and employees of each against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, or death arising in any way out of such critical application, whether or not Alliance or its subsidiaries, subcontractors, or affiliates were negligent in the design, manufacture, or warning of the Alliance product.

Customer Responsibility. Customers are responsible for the design, manufacture, and operation of their systems, applications, and products using Alliance products. ALL SEMICONDUCTOR PRODUCTS HAVE INHERENT FAILURE RATES AND LIMITED USEFUL LIVES. IT IS THE CUSTOMER'S SOLE RESPONSIBILITY TO DETERMINE WHETHER THE ALLIANCE PRODUCT IS SUITABLE AND FIT FOR THE CUSTOMER'S SYSTEM, APPLICATION, OR

PRODUCT. Customers must ensure that adequate design, manufacturing, and operating safeguards are included in customer's applications and products to eliminate the risk that personal injury, death, or severe property or environmental damages will result from failure of any semiconductor component.

Limited Warranty. In no event shall Alliance be liable for any indirect, incidental, punitive, special or consequential damages (including without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort, warranty, breach of contract or other legal theory, unless explicitly stated in a written agreement executed by Alliance's duly authorized representative.

Ball Assignments

Figure 1: 96-Ball x16 SR DDP Ball Assignments

Notes: 1. See Ball Descriptions in the monolithic data sheet.

2. A slash "/" defines a mode register selectable function or command/address function. For example: Ball E2 = NF/UDM_n/UDBI_n where either NF, UDM_n, or UDBI_n is defined via MRS.

Functional Block Diagrams

Figure 2: Functional Block Diagram (128 Meg x 16 x 16 Banks x 1 Rank)

Connectivity Test Mode

Connectivity test (CT) mode for the x16 Dual Die single-rank (SR) device is the same as two mono x8 devices connected in parallel. The mapping is restated for clarity.

Minimum Terms Definition for Logic Equations

The test input and output pins are related by the following equations, where INV denotes a logical inversion operation and XOR a logical exclusive OR operation:

MT0 = XOR (A1, A6, PAR) MT1 = XOR (A8, ALERT_n, A9) MT2 = XOR (A2, A5, A13) MT3 = XOR (A0, A7, A11) MT4 = XOR (CK_c, ODT, CAS_n/A15) MT5 = XOR (CKE, RAS_n/A16, A10/AP) MT6 = XOR (ACT_n, A4, BA1) MT7L = XOR (BG1, LDM_n/LDBI_n, CK_t) MT7U = XOR (BG1, UDM_n/UDBI_n, CK_t) MT8 = XOR (WE_n/A14, A12 / BC, BA0) MT9 = XOR (BG0, A3, RESET_n and TEN)

Logic Equations for a x16 **Dual Die**, SR Device

Byte 0	Byte 1
LDQ0 = MT0	UDQ0 = MT0
LDQ1 = MT1	UDQ1 = MT1
LDQ2 = MT2	UDQ2 = MT2
LDQ3 = MT3	UDQ3 = MT3
LDQ4 = MT4	UDQ4 = MT4
LDQ5 = MT5	UDQ5 = MT5
LDQ6 = MT6	UDQ6 = MT6
LDQ7 = MT7L	UDQ7 = MT7U
$LDQS_t = MT8$	$UDQS_t = MT8$
LDQS $c = MT9$	UDQS $c = MT9$

x16 Dual Die, SR Internal Connections

The figure below shows the internal connections of the x16 Dual Die, SR. The diagram shows why byte 0 and byte 1 outputs have the same logic equations except LDQ7 and UDQ7; they are different because the DM_n/DBI_n pins are not common for each byte.

Figure 3: x16 Dual Die, SR

Electrical Specifications - Leakages

Table 4: Input and Output Leakages

Symbol	Parameter	Min	Max	Units	Notes
Iı	Input leakage current Any input $OV \le V_{IN} \le V_{DD}$, V_{REF} pin $OV \le V_{IN} \le 1.1V$ (All other pins not under test = OV)	-4	4	μΑ	1
I _{VREF}	V_{REF} supply leakage current $V_{REFDQ} = V_{DD}/2$ or $V_{REFCA} = V_{DD}/2$ (All other pins not under test = 0V)	-4	4	μA	2
I _{ZQ}	Input leakage on ZQ pin	-50	10	μΑ	
I _{TEN}	Input leakage on TEN pin	-12	20	μΑ	
IOZPD	Output leakage: V _{OUT} = V _{DDQ}	-	10	μA	3,5
I _{OZPU}	Output leakage: $V_{OUT} = V_{SSQ}$	-50	_	μA	3, 4, 5

Notes: 1. Any input OV < Vin < 1.1V

2. $V_{REFCA} = V_{DD}/2$, V_{DD} at valid level.

3. DQs are disabled.

4. ODT is disabled with the ODT input HIGH.

5. This value needs to be multiplied by 2 for ALERT_n since it serves both bytes.

Temperature and Thermal Impedance

It is imperative that the DDR4 SDRAM device's temperature specifications, shown in the following table, be maintained in order to ensure the junction temperature is in the proper operating range to meet data sheet specifications. An important step in maintaining the proper junction temperature is using the device's thermal impedances correctly. The thermal impedances listed in apply to the current die revision and packages.

Incorrectly using thermal impedances can produce significant errors. Read Alliance technical note, "Thermal Applications," prior to using the values listed in the thermal impedance table. For designs that are expected to last several years and require the flexibility to use several DRAM die shrinks, consider using final target theta values (rather than existing values) to account for increased thermal impedances from the die size reduction.

The DDR4 SDRAM device's safe junction temperature range can be maintained when the T_C specification is not exceeded. In applications where the device's ambient temperature is too high, use of forced air and/or heat sinks may be required to satisfy the case temperature specifications.

Table 5: Thermal Characteristics

Notes 1-3 apply to entire table

Parameter	Symbol	Value	Units	Notes
Operating temperature	T _C	0 to 85	°C	
		0 to 95	°C	4

Notes: 1. MAX operating case temperature T_C is measured in the center of the package, as shown below.

2. A thermal solution must be designed to ensure that the device does not exceed the maximum T_C during operation.

- 3. Device functionality is not guaranteed if the device exceeds maximum T_C during operation.
- 4. If T_C exceeds 85°C, the DRAM must be refreshed externally at 2x refresh, which is a 3.9μs interval refresh rate. The use of self refresh temperature (SRT) or automatic self refresh (ASR), if available, must be enabled.

Figure 4: Temperature Test Point Location

Table	6 :	Thermal	Impedance

Package	Substrate	O JA (°C/W) Airflow = Om/s	O JA (°C/W) Airflow = 1m/s	O JA (°C/W) Airflow = 2m/s	⊖ JB (°C/W)	O JC (°C/W)	Notes
96-ball	Low conductivity	48.7	36.9	32.4	NA	2.6	1
	High conductivity	28.7	23.7	22.0	9.7	NA	

Notes: 1. Thermal resistance data is based on a typical number.

DRAM Package Electrical Specifications

Table 7: DRAM Package Electrical Specifications for x16 DDP Devices

Notes 1-2 apply to the entire table

			DDR4-1600, 2400, 2666,	DDR4-1600, 1866, 2133, 2400, 2666, 2933, 3200		
Parameter		Symbol	Min	Max	Unit	Notes
Input/output	Zpkg	Z _{IO}	35	60	ohm	3
	Package delay	Td _{IO}	60	120	ps	3
	Lpkg	L _{IO}	-	5.5	nH	
	Cpkg	C _{IO}	-	4	pF	
DQSL_t/DQSL_c/D	Zpkg	Z _{IO DOS}	35	60	ohm	
	Package delay	Td _{IO DQS}	60	120	ps	
	Lpkg	L _{IO DQS}	-	5.5	nH	
	Cpkg	C _{IO DQS}	-	4	pF	
DQSL_t/DQSL_c,	Delta Zpkg	DZ _{IO DQS}	-	5	ohm	4
DQSU_t/DQSU_c,	Delta delay	DTd _{IO DQS}	-	5	ps	4
Input CTRL pins	Zpkg	Z _{I CTRL}	30	70	ohm	5
	Package delay	Td _{I CTRL}	60	120	ps	5
	Lpkg	L _{I CTRL}	-	7.5	nH	
	Cpkg	C _{I CTRL}	-	4	pF	
Input CMD ADD	Zpkg	Z _{I ADD CMD}	30	60	ohm	6
pins	Package delay	Td _{I ADD CMD}	60	120	ps	6
	Lpkg	L _{I ADD CMD}	-	7.5	nH	
	Cpkg	C _{I ADD CMD}	-	4	pF	
CK_t, CK_c	Zpkg	Z _{CK}	30	60	ohm	
	Package delay	Td _{CK}	60	120	ps	
	Delta Zpkg	DZ _{DCK}	-	5	ohm	7
	Delta delay	DTd _{DCK}	-	5	ps	7
Input CLK	Lpkg	L _{I CLK}	-	7.5	nH	
	Cpkg	C _{I CLK}	-	4	pF	
ZQ Zpkg		Z _{O ZQ}	-	50	ohm	
ZQ delay		Td _{O ZQ}	30	135	ps	
ALERT Zpkg		Z _{O ALERT}	30	60	ohm	
ALERT delay		Td _{O ALERT}	60	110	ps	

Notes: 1. The values in this table are guaranteed by design/simulation only, and are not subject to production testing.

- 2. Package implementations should satisfy targets if the Zpkg and package delay fall within the ranges shown, and the maximum Lpkg and Cpkg do not exceed the maximum values shown. The package design targets are provided for reference, system signal simulations should not use these values but use the Alliance package model.
- 3. Z_{IO} and Td_{IO} apply to DQ, DM, DQS_c, DQS_t, TDQS_t, and TDQS_c.
- 4. Absolute value of ZIO (DQS_t), ZIO (DQS_c) for impedance (Z) or absolute value of TdIO (DQS_t), TdIO (DQS_c) for delay (Td).
- 5. $Z_{I CTRL}$ and $Td_{I CTRL}$ apply to ODT, CS_n, and CKE.
- 6. $Z_{I\,ADD\,\,CMD}$ and Td_{I\,ADD\,\,CMD} apply to A[17:0], BA[1:0], BG[1:0], RAS_n CAS_n, and WE_n.
- 7. Absolute value of ZCK_t, ZCK_c for impedance (Z) or absolute value of TdCK_t, TdCK_c for delay (Td).

Current Specifications - Limits

Table 8: DDR4 x16 **Dual** Die I_{CDD} and I_{CPP} Specifications and Conditions - ($0 \leq T_C \leq 85^{\circ}C$)

Combined Symbol	Individual Die Status	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Units
I _{CDD0}	$I_{CDD0} = I_{DD0} * 2$	132	134	136	138	140	mA
I _{CPP0}	I _{CPP0} = I _{PP0} * 2	8	8	8	8	8	mA
I _{CDD1}	I _{CDD1} = I _{DD1} * 2	160	162	164	166	168	mA
I _{CDD2N}	$I_{CDD2N} = I_{DD2N} * 2$	82	84	86	88	90	mA
I _{CDD2NT}	$I_{CDD2NT} = I_{DD2NT} * 2$	108	110	112	114	116	mA
I _{CDD2P}	$I_{CDD2P} = I_{DD2P} * 2$	76	76	76	76	76	mA
I _{CDD2Q}	$I_{CDD2Q} = I_{DD2Q} * 2$	84	84	84	84	84	mA
I _{CDD3N}	$I_{CDD3N} = I_{DD3N} * 2$	116	118	120	122	124	mA
I _{CPP3N}	I _{CPP3N} = I _{PP3N} * 2	4	4	4	4	4	mA
I _{CDD3P}	$I_{CDD3P} = I_{DD3P} * 2$	94	96	98	100	102	mA
I _{CDD4R}	$I_{CDD4R} = I_{DD4R} * 2$	282	308	334	360	386	mA
I _{CDD4W}	$I_{CDD4W} = I_{DD4W} * 2$	202	222	242	262	282	mA
I _{CDD5R}	$I_{CDD5R} = I_{DD5R} * 2$	136	136	136	136	136	mA
I _{CPP5R}	I _{CPP5R} = I _{PP5R} * 2	8	8	8	8	8	mA
I _{CDD6N}	$I_{CDD6N} = I_{DD6N} * 2$	106	106	106	106	106	mA
I _{CDD6} ³	$I_{CDD6E} = I_{DD6E} * 2$	180	180	180	180	180	mA
I _{CDD6R} ³	$I_{CDD6R} = I_{DD6R} * 2$	40	40	40	40	40	mA
I _{CDD6A} (25°C) ³	$I_{CDD6A} = I_{DD6A} * 2$	22	22	22	22	22	mA
I _{CDD6A} (45°C) ³	$I_{CDD6A} = I_{DD6A} * 2$	40	40	40	40	40	mA
I _{CDD6A} (75°C) ³	$I_{CDD6A} = I_{DD6A} * 2$	102	102	102	102	102	mA
I _{CDD6A} (95°C) ³	$I_{CDD6A} = I_{DD6A} * 2$	180	180	180	180	180	mA
I _{CPP6x} 3	I _{CPP6x} = I _{CPP6x} * 2	12	12	12	12	12	mA
I _{CDD7}	I _{CDD7} = I _{DD7} * 2	400	400	400	400	400	mA
I _{CPP7}	I _{CPP7} = I _{PP7} * 2	26	26	26	26	26	mA
I _{CDD8}	I _{CDD8} = I _{DD8} * 2	72	72	72	72	72	mA

Notes 1 and 2 apply to the entire table

Notes: 1. I_{CDD} values reflect the combined current of both individual die. I_{DDx} represents individual die values.

2. I_{CDD} values must be derated (increased) when operated outside of the range 0°C $\leq T_C \leq 85$ °C. They must also be derated when using features such as CAL, CA parity, read/write DBI, AL, gear-down, write CRC, 2X/4X REF, and DLL disabled. Refer to the 16Gb monolithic data sheet for all derating values. Derating values apply to each individual I_{DDx} that make up the combined I_{CDD} .

3. I_{CDD6R} , I_{CDD6A}, and I_{CDD6E} values are verified by design and characterization, and may not be subject to production test.

Package Dimensions

Figure 5: 96-Ball FBGA

- Notes: 1. All dimensions are in millimeters.
 - 2. Solder ball material: SACQ (92.5% Sn, 4% Ag, 3% Bi, 0.5% Cu).

PART NUMBERING SYSTEM

AS4C	2 G16D4	-62	В	С	Ν	XX
DRAM	2 G16= 2 G x 16 D4=DDR4	62=1600 MHz	B=FBGA	C=Commercial temp 0°C~ 95°C	Indicates Pb and Halogen Free	Packing Type None:Tray TR:Reel

Alliance Memory, Inc. 12815 NE 124th Street Suite D Kirkland, WA 98034 Tel: 425-898-4456 Fax: 425-896-8628 www.alliancememory.com

Copyright © Alliance Memory All Rights Reserved

© Copyright 2007 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.