

32Gb (4G x 8) Dual Die DDR4 SDRAM

AS4C4G8D4 - 128 Meg x 8 x 16 Banks x 2 Ranks

Revision History

Revision	Details	Date
Rev 1.0	Initial Release	Sept. 2024

Description

The 32Gb (Dual Die) DDR4 SDRAM uses 16Gb DDR4 SDRAM die (essentially two ranks of the 16Gb DDR4 SDRAM). Refer to Alliance's 16Gb DDR4 SDRAM data sheet for the specifications not included in this document.

Features

- Uses 16Gb die
- Two ranks (includes dual CS#, ODT, and CKE balls)
- Each rank has 4 groups of 4 internal banks for concurrent operation
- $V_{DD} = V_{DDQ} = 1.2V (1.14-1.26V)$
- 1.2V V_{DDO}-terminated I/O
- JEDEC-standard ball-out
- Low-profile package
- T_C of $0\,^{\circ}C$ to $95\,^{\circ}C$

Features

- -0° C to 85° C: 8192 refresh cycles in 64ms
- 85°C to 95°C: 8192 refresh cycles in 32ms

Marking
4G8
-62
None
None
None

Table 1: Key Timing Parameters

Speed Grade ¹	Data Rate (MT/s)	Target CL- n RCD- n RP	^t AA (ns)	^t RCD (ns)	^t RP (ns)
-62	3200	22-22-22	13.75	13.75	13.75

Notes: 1. Refer to the Speed Bin Tables for additional details.

Table 2: Ordering Information

Product part No	Org	Temperature Tc	Max Clock (MHz)	Package
AS4C4G8D4-62BCN	4G x 8	Commercial 0°C to 95°C	1600	78-ball FBGA 7.5x11mm

Table 3: Addressing

Parameter	4096 Meg x 8
Configuration	128 Meg x 8 x 16 banks x 2 ranks
Bank group address	BG[1:0]
Bank count per group	4
Bank address in bank group	BA[1:0]
Row address	128K A[16:0]
Column address	1K A[9:0]

Important Notes and Warnings

Alliance Memory Inc. ("Alliance") reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions. This document supersedes and replaces all information supplied prior to the publication hereof. You may not rely on any information set forth in this document if you obtain the product described herein from any unauthorized distributor or other source not authorized by Alliance.

Automotive Applications. Products are not designed or intended for use in automotive applications unless specifically designated by Alliance as automotive-grade by their respective data sheets. Distributor and customer/distributor shall assume the sole risk and liability for and shall indemnify and hold Alliance harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting directly or indirectly from any use of non-automotive-grade products in automotive applications. Customer/distributor shall ensure that the terms and conditions of sale between customer/distributor and any customer of distributor/customer (1) state that Alliance products are not designed or intended for use in automotive applications unless specifically designated by Alliance as automotive-grade by their respective data sheets and (2) require such customer of distributor/customer to indemnify and hold Alliance harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting from any use of non-automotive-grade products in automotive applications.

Critical Applications. Products are not authorized for use in applications in which failure of the Alliance component could result, directly or indirectly in death, personal injury, or severe property or environmental damage ("Critical Applications"). Customer must protect against death, personal injury, and severe property and environmental damage by incorporating safety design measures into customer's applications to ensure that failure of the Alliance component will not result in such harms. Should customer or distributor purchase, use, or sell any Alliance component for any critical application, customer and distributor shall indemnify and hold harmless Alliance and its subsidiaries, subcontractors, and affiliates and the directors, officers, and employees of each against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, or death arising in any way out of such critical application, whether or not Alliance or its subsidiaries, subcontractors, or affiliates were negligent in the design, manufacture, or warning of the Alliance product.

Customer Responsibility. Customers are responsible for the design, manufacture, and operation of their systems, applications, and products using Alliance products. ALL SEMICONDUCTOR PRODUCTS HAVE INHERENT FAILURE RATES AND LIMITED USEFUL LIVES. IT IS THE CUSTOMER'S SOLE RESPONSIBILITY TO DETERMINE WHETHER THE ALLIANCE PRODUCT IS SUITABLE AND FIT FOR THE CUSTOMER'S SYSTEM, APPLICATION, OR PRODUCT. Customers must ensure that adequate design, manufacturing, and operating safeguards are included in customer's applications and products to eliminate the risk that personal injury, death, or severe property or envi- ronmental damages will result from failure of any semiconductor component.

Limited Warranty. In no event shall Alliance be liable for any indirect, incidental, punitive, special or consequential damages (including without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort, warranty, breach of contract or other legal theory, unless explicitly stated in a written agreement executed by Alliance's duly authorized representative.

Confidential -3 / 18- Rev 1.0 Sept. 2024

Functional Description

The Dual Die DDR4 SDRAM is a high-speed, CMOS dynamic random access memory device internally configured as two 16-bank DDR4 SDRAM devices.

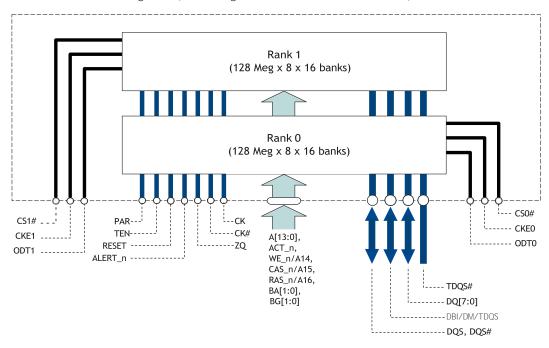
Although each die is tested individually within the dual-die package, some Dual Die test results may vary from a like-die tested within a monolithic die package.

The DDR4 SDRAM uses a double data rate architecture to achieve high-speed operation. The double data rate architecture is an 8*n*-prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O balls. A single read or write access consists of a single 8*n*-bit-wide, one-clock-cycle data transfer at the internal DRAM core and eight corresponding *n*-bit-wide, one-half-clock-cycle data transfers at the I/O balls.

The differential data strobe (DQS, DQS#) is transmitted externally, along with data, for use in data capture at the DDR4 SDRAM input receiver. DQS is center-aligned with data for WRITEs. The read data is transmitted by the DDR4 SDRAM and edge-aligned to the data strobes.

Read and write accesses to the DDR4 SDRAM are burst-oriented. Accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Operation begins with the registration of an ACTIVATE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVATE command are used to select the bank and row to be accessed. The address bits (including CSn#, BAn, and An) registered coincident with the READ or WRITE command are used to select the rank, bank, and starting column location for the burst access.

This data sheet provides a general description, package dimensions, and the package ballout. Refer to the Alliance monolithic DDR4 data sheet for complete information regarding individual die initialization, register definition, command descriptions, and die operation.


Commercial Temperature

The industrial temperature (IT) option, if offered, requires that the case temperature not exceed 0°C or 95°C . JEDEC specifications require the refresh rate to double when T_{C} exceeds 85°C ; this also requires use of the high-temperature self refresh option. Additionally, ODT resistance, I_{DD} values, some I_{DD} specifications and the input/output impedance must be derated when T_{C} is $<0^{\circ}\text{C}$ or $>95^{\circ}\text{C}$. See the DDR4 monolithic data sheet for details.

Functional Block Diagrams

Figure 1: Functional Block Diagram (128 Meg x 8 x 16 Banks x 2 Ranks)

Electrical Specifications - Leakages

Table 4: Input and Output Leakages

Symbol	Parameter	Min	Max	Units	Notes
I _{IN}	Input leakage current Any input $\mathbf{0V} \leq V_{\text{IN}} \leq \mathbf{V}_{\text{DD}}$, V_{REF} pin $0V \leq \mathbf{V}_{\text{IN}} \leq 1.1V$ (All other pins not under test = $0V$)	-4	4	μА	1
Ivrefca	V _{REF} supply leakage current (All other pins not under test = 0V)	-4	4	μΑ	2
I _{ZQ}	Input leakage on ZQ pin	-100	20	μΑ	
I _{TEN}	Input leakage on TEN pin	-12	20	μΑ	
l _{OZpd}	Output leakage: V _{OUT} = V _{DDQ}	-	20	μΑ	3
I _{OZpu}	Output leakage: V _{OUT} = V _{SSQ}	-100	-	μΑ	3, 4

Notes: 1. Any input $0V < V_{IN} < 1.1V$

- 2. $V_{REFCA} = V_{DD}/2$, V_{DD} at valid level.
- 3. DQ are disabled.
- 4. ODT is disabled with the ODT input HIGH.

Temperature and Thermal Impedance

It is imperative that the DDR4 SDRAM device's temperature specifications, shown in the following table, be maintained in order to ensure the junction temperature is in the proper operating range to meet data sheet specifications. An important step in maintaining the proper junction temperature is using the device's thermal impedances correctly. The thermal impedances listed in apply to the current die revision and packages.

Incorrectly using thermal impedances can produce significant errors. Read Alliance technical note, "Thermal Applications," prior to using the values listed in the thermal impedance table. For designs that are expected to last several years and require the flexibility to use several DRAM die shrinks, consider using final target theta values (rather than existing values) to account for increased thermal impedances from the die size reduction.

The DDR4 SDRAM device's safe junction temperature range can be maintained when the T_C specification is not exceeded. In applications where the device's ambient temperature is too high, use of forced air and/or heat sinks may be required to satisfy the case temperature specifications.

Table 5: Thermal Characteristics

Parameter	Symbol	Value	Units	Notes
Operating temperature	T _C	0 to 85	°C	
		0 to 95	°C	4

Notes: 1. MAX operating case temperature T_{C} is measured in the center of the package, as shown below.

- 2. A thermal solution must be designed to ensure that the device does not exceed the maximum T_C during operation.
- 3. Device functionality is not guaranteed if the device exceeds maximum T_{C} during operation.
- 4. If T_C exceeds 85°C, the DRAM must be refreshed externally at 2x refresh, which is a 3.9μs interval refresh rate. The use of self refresh temperature (SRT) or automatic self refresh (ASR), if available, must be enabled.
- 5. Notes 1-3 apply to entire table.

Figure 2: Temperature Test Point Location

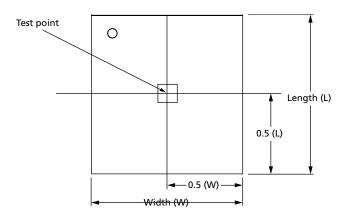


Table 6: Thermal Impedance

Package	Substrate	• JA (°C/W) Airflow = Om/s	• JA (°C/W) Airflow = 1m/s	• JA (°C/W) Airflow = 2m/s	9 JB (°C/W)	9 JC (°C/W)	Notes
78-ball	Low conductivity	51.2	39.1	34.5	NA	2.6	1
	High conductivity	30.2	25.0	23.3	10.4	NA	

Notes: 1. Thermal resistance data is based on a typical number.

Confidential -7 / 18- Rev 1.0 Sept. 2024

Electrical Characteristics - AC and DC Output Measurement Levels Single-Ended Outputs

Table 7: Single-Ended Output Levels

Parameter	Symbol	DDR4-1600 to DDR4-3200	Unit
DC output high measurement level (for IV curve linearity)	V _{OH(DC)}	$1.1 \times V_{DDQ}$	V
DC output mid measurement level (for IV curve linearity)	V _{OM(DC)}	$0.8 \times V_{DDQ}$	V
DC output low measurement level (for IV curve linearity)	V _{OL(DC)}	$0.5 \times V_{DDQ}$	V
AC output high measurement level (for output slew rate)	V _{OH(AC)}	(0.7 + 0.15) × V _{DDQ}	V
AC output low measurement level (for output slew rate)	V _{OL(AC)}	(0.7 - 0.15) × V _{DDQ}	V

Notes: 1. The swing of $\pm 0.15 \times V_{DDQ}$ is based on approximately 50% of the static single-ended output peak-to-peak swing with a driver impedance of RZQ/7 and an effective test load of 50Ω to $V_{TT} = V_{DDQ}$.

Using the same reference load used for timing measurements, output slew rate for falling and rising edges is defined and measured between $V_{OL(AC)}$ and $V_{OH(AC)}$ for single-ended signals.

Table 8: Single-Ended Output Slew Rate Definition

	Measured		
Description	From	То	Defined by
Single-ended output slew rate for rising edge	V _{OL(AC)}	V _{OH(AC)}	[V _{OH(AC)} - V _{OL(AC)}]/ΔTR _{se}
Single-ended output slew rate for falling edge	V _{OH(AC)}	V _{OL(AC)}	[V _{OH(AC)} - V _{OL(AC)}]/ΔTF _{se}

Figure 3: Single-Ended Output Slew Rate Definition

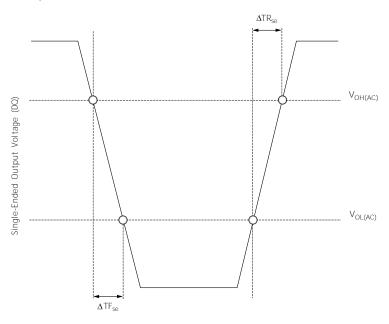


Table 9: Single-Ended Output Slew Rate

		DDR4-1333 to DDR4-3200		
Parameter	Symbol	Min	Max	Unit
Single-ended output slew rate	SRQ _{se}	2	7	V/ns

Notes: 1. For $R_{ON} = R_{ZQ}/7$.

- 2. SR = slew rate; Q = query output; se = single-ended signals.
- 3. In two cases a maximum slew rate of 12V/ns applies for a single DQ signal within a byte lane:
 - Case 1 is defined for a single DQ signal within a byte lane that is switching into a certain direction (either from HIGH-to-LOW or LOW-to-HIGH) while all remaining DQ signals in the same byte lane are static (they stay at either HIGH or LOW).
 - Case 2 is defined for a single DQ signal within a byte lane that is switching into a certain direction (either from HIGH-to-LOW or LOW-to-HIGH) while all remaining DQ signals in the same byte lane are switching into the opposite direction (from LOW-to-HIGH or HIGH-to-LOW, respectively). For the remaining DQ signal switching into the opposite direction, the standard maximum limit of 7 V/ns applies.

Confidential -9 / 18- Rev 1.0 Sept. 2024

Differential Outputs

Table 10: Differential Output Levels

Parameter	Symbol	DDR4-1600 to DDR4-3200	Unit
AC differential output high measurement level (for output slew rate)	V _{OH} , diff(AC)	0.3 × V _{DDQ}	V
AC differential output low measurement level (for output slew rate)	V _{OL, diff(AC)}	-0.3 × V _{DDQ}	V

Notes: 1. The swing of $\pm 0.3 \times V_{DDQ}$ is based on approximately 50% of the static single-ended output peak-to-peak swing with a driver impedance of RZQ/7 and an effective test load of 50Ω to $V_{TT} = V_{DDQ}$ at each differential output.

Using the same reference load used for timing measurements, output slew rate for falling and rising edges is defined and measured between $V_{OL,diff(AC)}$ and $V_{OH,diff(AC)}$ for differential signals.

Table 11: Differential Output Slew Rate Definition

	Measured		
Description	From	То	Defined by
Differential output slew rate for rising edge	$V_{OL,diff(AC)}$	$V_{OH,diff(AC)}$	$[V_{OH,diff(AC)} - V_{OL,diff(AC)}]/\Delta TR_{diff}$
Differential output slew rate for falling edge	$V_{OH,diff(AC)}$	$V_{OL,diff(AC)}$	$[V_{OH,diff(AC)} - V_{OL,diff(AC)}]/\Delta TF_{diff}$

Figure 4: Differential Output Slew Rate Definition

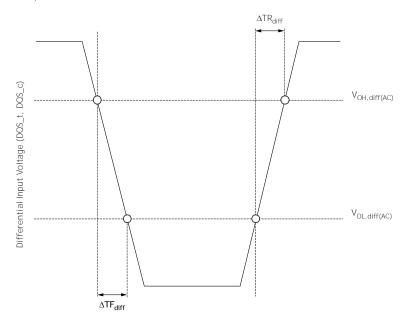


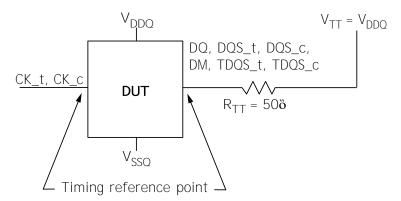
Table 12: Differential Output Slew Rate

		DDR4-1333 t		
Parameter	Symbol	Min	Max	Unit
Differential output slew rate	SRQ _{diff}	8	18	V/ns

Notes: 1. For $R_{ON} = R_{ZQ}/7$.

2. SR = slew rate; Q = query output; diff = differential signals.

Confidential -10 / 18- Rev 1.0 Sept. 2024


Reference Load for AC Timing and Output Slew Rate

The effective reference load of 50Ω to $V_{TT} = V_{DDQ}$ and driver impedance of $R_{ZQ}/7$ for each output was used in defining the relevant AC timing parameters of the device as well as output slew rate measurements.

 R_{ON} nominal of DQ, DQS_t and DQS_c drivers uses 34 ohms to specify the relevant AC timing paraeter values of the device. The maximum DC high level of output signal = $1.0 \times V_{DDQ}$, the minimum DC low level of output signal = $\{34/(34+50)\} \times V_{DDO} = 0.4 \times V_{DDO}$

The nominal reference level of an output signal can be approximated by the following: The center of maximum DC high and minimum DC low = $\{(1+0.4)/2\} \times V_{DDQ} = 0.7 \times V_{DDQ}$. The actual reference level of output signal might vary with driver R_{ON} and reference load tolerances. Thus, the actual reference level or midpoint of an output signal is at the widest part of the output signal's eye.

Figure 5: Reference Load For AC Timing and Output Slew Rate

Confidential -11 / 18- Rev 1.0 Sept. 2024

Electrical Specifications - I_{CDD} Parameters

Table 13: DDR4 I_{CDD} Specifications and Conditions - (0° \leq T_{C} \leq 85°C)

Combined Symbol	Individual Die Status	Bus Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Units
I _{CDD0}	I _{CDD0} =	x4	89	90	91	92	93	mA
	$I_{DD0} + I_{DD2P}$	x8	94	95	96	97	98	
I _{CPP0}	I _{CPP0} = I _{PP0} + I _{PP3N}	x4, x8	5	5	5	5	5	mA
I _{CDD1}	I _{CDD1} =	x4	100	101	102	103	104	mA
	$I_{DD1} + I_{DD2P}$	x8	105	106	107	108	109	
I _{CDD2N}	$I_{CDD2N} = I_{DD2N} + I_{DD2P}$	x4, x8	79	80	81	82	83	mA
I _{CDD2NT}	$I_{CDD2NT} = I_{DD2NT} + I_{DD2P}$	x4, x8	85	86	87	88	89	mA
I _{CDD2P}	I _{CDD2P} = I _{DD2P} + I _{DD2P}	x4, x8	76	76	76	76	76	mA

Table 13: DDR4 I_{CDD} Specifications and Conditions - (0° \leq T_C \leq 85°C)

Combined Symbol	Individual Die Status	Bus Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Units
I _{CDD2Q}	I _{CDD2Q} = I _{DD2Q} + I _{DD2P}	x4, x8	80	80	80	80	80	mA
I _{CDD3N}	I _{CDD3N} =	x4	94	95	96	97	98	mA
	$I_{DD3N} + I_{DD2P}$	x8	95	96	97	98	99	
I _{CPP3N}	I _{CPP3N} = I _{PP3N} + I _{PP3N}	x4, x8	4	4	4	4	4	mA
I _{CDD3P}	$I_{CDD3P} = I_{DD3P}$	x4	82	83	84	85	86	mA
	+ I _{DD2P}	x8	84	85	86	87	88	
I _{CDD4R}	I _{CDD4R} =	x4	139	144	150	157	165	mA
	$I_{DD4R} + I_{DD2P}$	x8	147	155	163	170	178	
I _{CDD4W}	I _{CDD4W} =	x4	118	122	126	130	134	mA
	$I_{DD4W} + I_{DD2P}$	x8	130	135	140	145	150	
I _{CDD5R}	I _{CDD5R} = I _{DD5R} + I _{DD2P}	x4, x8	106	106	106	106	106	mA
I _{CPP5R}	I _{CPP5R} = I _{PP5R} + I _{PP3N}	x4, x8	6	6	6	6	6	mA
I _{CDD6N}	I _{CDD6N} =	x4, x8	106	106	106	106	106	mA
I _{CDD6E} ²	I _{CDD6E} = I _{DD6E}	x4, x8	180	180	180	180	180	mA
I _{CDD6R} ²	_{CDD6R} =	x4, x8	40	40	40	40	40	mA
I _{CDD6A} (25°C) ²	I _{CDD6A} = I _{DD6A}	x4, x8	22	22	22	22	22	mA
I _{CDD6A} (45°C) ²	I _{CDD6A} = I _{DD6A}	x4, x8	40	40	40	40	40	mA
I _{CDD6A} (75°C) ²	$I_{CDD6A} = I_{DD6A} + I_{DD6A}$	x4, x8	102	102	102	102	102	mA
I _{CDD6A} (95°C) ²	I _{CDD6A} = I _{DD6A}	x4, x8	180	180	180	180	180	mA
I _{CPP6X}	I _{CPP6x} = I _{PP6x} + I _{PP6x}	x4, x8	12	12	12	12	12	mA
I _{CDD7}	I _{CDD7} =	x4	248	263	278	293	308	mA
	I _{DD7} + I _{DD2P}	x8	197	199	201	203	205	
I _{CPP7}	I _{CPP7} =	x4	13	13	13	13	13	mA
	I _{PP7} + I _{PP3N}	x8	10	10	10	10	10	
I _{CDD8}	I _{CDD8} = I _{DD8} +	x4, x8	72	72	72	72	72	mA

AS4C4G8D4

- Notes: 1. I_{CDD} values reflect the combined current of both individual die. I_{DDx} represents individual die values.
 - 2. I_{CDD6R}, I_{CDD6A}, and I_{CDD6E} values are verified by design and characterization, and may not be subject to production test.
 - 3. I_{CDD} values must be derated (increased) when operated outside of the range 0°C \leq $T_{C} \leq$ 85°C. They must also be derated when using features such as CAL, CA Parity, Read/Write DBI, AL, Gear-down, Write CRC, 2X/4X REF, and DLL disabled. Refer to the 16Gb monolithic data sheet for all derating values. Derating values apply to each individual I_{DDX} that make up the combined I_{CDD}

Confidential -14 / 18- Rev 1.0 Sept. 2024

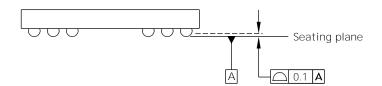
DRAM Package Electrical Specifications

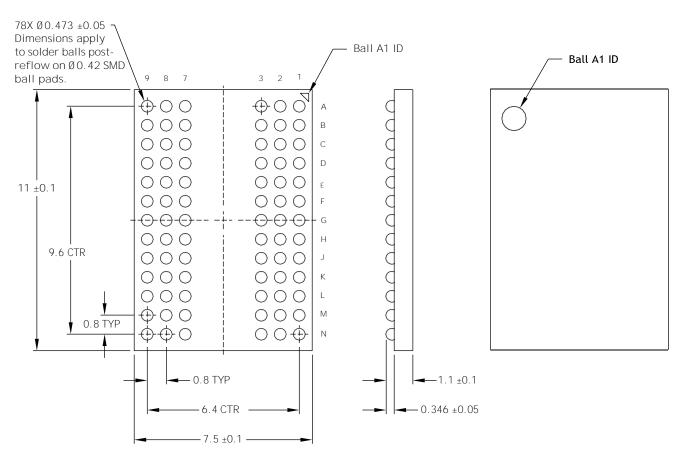
Table 14: DRAM Package Electrical Specifications for x4, x8, and x16 DDP Devices

Parameter			DDR4-1600, 1866, 2133, 2400, 2666, 2933, 3200			
		Symbol	Min	Max	Unit	Notes
Input/output	Zpkg	Z _{IO}	35	60	ohm	3
	Package delay	Td _{IO}	60	120	ps	3
	Lpkg	L _{IO}	-	5.5	nH	
	Cpkg	C _{IO}	-	4	pF	
DQSL_t/DQSL_c/D	Zpkg	Z _{IO DQS}	35	60	ohm	
QSU_t/DQSU_c	Package delay	Td _{IO DQS}	60	120	ps	
	Lpkg	L _{IO DQS}	-	5.5	nH	
	Cpkg	C _{IO DQS}	-	4	pF	
DQSL_t/DQSL_c,	Delta Zpkg	DZ _{IO DQS}	-	5	ohm	4
DQSU_t/DQSU_c,	Delta delay	DTd _{IO DQS}	-	5	ps	4
Input CTRL pins	Zpkg	Z _{I CTRL}	30	70	ohm	5
	Package delay	Td _{I CTRL}	60	120	ps	5
	Lpkg	L _{I CTRL}	-	7.5	nH	
	Cpkg	C _{I CTRL}	-	4	pF	
Input CMD ADD	Zpkg	Z _{I ADD CMD}	30	60	ohm	6
pins	Package delay	Td _{I ADD CMD}	60	120	ps	6
	Lpkg	L _I ADD CMD	-	7.5	nH	
	Cpkg	C _{I ADD CMD}	-	4	pF	
CK_t, CK_c	Zpkg	Z _{CK}	30	60	ohm	
	Package delay	Td _{CK}	60	120	ps	
	Delta Zpkg	DZ _{DCK}	-	5	ohm	7
	Delta delay	DTd _{DCK}	-	5	ps	7
Input CLK	Lpkg	L _{I CLK}	-	7.5	nH	
	Cpkg	C _{I CLK}	-	4	pF	
ZQ Zpkg		Z _{O ZQ}	-	50	ohm	
ZQ delay		Td _{O ZQ}	30	135	ps	
ALERT Zpkg		Z _{O ALERT}	30	60	ohm	
ALERT delay		Td _{O ALERT}	60	110	ps	

Notes: 1. The values in this table are guaranteed by design/simulation only, and are not subject to production testing.

AS4C4G8D4


- 2. Package implementations should satisfy targets if the Zpkg and package delay fall within the ranges shown, and the maximum Lpkg and Cpkg do not exceed the maximum values shown. The package design targets are provided for reference, system signal simulations should not use these values but use the Alliance package model.
- 3. Z_{IO} and Td_{IO} apply to DQ, DM, DQS_c, DQS_t, TDQS_t, and TDQS_c.
- 4. Absolute value of ZIO (DQS_t), ZIO (DQS_c) for impedance (Z) or absolute value of TdIO (DQS_t), TdIO (DQS_c) for delay (Td).
- 5. Z_{ICTRL} and Td_{ICTRL} apply to ODT, CS_n, and CKE.
- 6. $Z_{IADD\ CMD}$ and $Td_{IADD\ CMD}$ apply to A[17:0], BA[1:0], BG[1:0], RAS_n CAS_n, and WE_n.
- 7. Absolute value of ZCK_t, ZCK_c for impedance (Z) or absolute value of TdCK_t, TdCK_c for delay (Td).
- 8. Notes 1-2 apply to the entire table.


Confidential -16 / 18- Rev 1.0 Sept. 2024

Package Dimensions

Figure 6: 78-Ball FBGA

Notes: 1. All dimensions are in millimeters.

2. Solder ball material: SACQ (92.5% Sn, 3% Ag, 4% Bi, 0.5% Cu).

PART NUMBERING SYSTEM

AS4C	4 G 8 D4	-62	В	С	N	XX
DRAM	4 G8= 4 G x 8 D4=DDR4	62=1600 MHz	B=FBGA	C=Commercial temp 0°C~ 95°C	Indicates Pb and Halogen Free	Packing Type None:Tray TR:Reel

Alliance Memory, Inc. 12815 NE 124th Street Suite D Kirkland, WA 98034 Tel: 425-898-4456

Tel: 425-898-4456 Fax: 425-896-8628 www.alliancememory.com

Copyright © Alliance Memory All Rights Reserved

© Copyright 2007 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any quarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.