

for

AS5F38G04SND-08LIN with Pb/Halogen Free (SPI NAND Flash)

Issued Date: Oct 08, 2020

Confidential Nov.2020

CONTENTS

U.	KELI	ABILITY TEST SUMMARY	1
1.	INTF	RODUCTION	2
2.	PRO	DUCT INFORMATION	2
3.	REL	ABILITY	2
	3.1.	Sample Preparation Flow	2
	3.2.	Life Test	3
		3.2.1. Test Flow	3
		3.2.2. Test Criteria	3
		3.2.3. Test Result	3
	3.3.	Environmental Test	4
		3.3.1. Test Flow	4
		3.3.2. Test Condition and Time	4
		3.3.3. Test Criteria and Result	7
	3.4.	ESD Test	8
	3.5.	Latch-Up Test	8
4	CON	CLUSION	8

Reliability Qualification Report for AS5F38G04SND-08LIN with Pb/ Halogen Free (SPI NAND Flash)

0. RELIABILITY TEST SUMMARY

Test Item	Test Condition	Pass Criteria	Test Result
OLT	1.1*Vcc, 125°C, 1000Hrs	1/2 (A/R)	0/77 (PASS)
MSLT*	Level III	0/1 (A/R)	0/152 (PASS)
HTST	150°ℂ, 1000Hrs	0/1 (A/R)	0/76 (PASS)
тст	-65°C ~ +150°C, @3cph, 500Cycles	0/1 (A/R)	0/76 (PASS)
HAST	130˚ℂ , 85%R.H., 2.3atm, 96Hrs	0/1 (A/R)	0/76 (PASS)
	HBM: R=1.5KΩ, C=100pF	≧±2KV	0/3 (PASS)
ESD	MM: R=0KΩ, C=200pF	≧±200V	0/3 (PASS)
	CDM: Non-Socket Mode	≧±500V	0/3 (PASS)
Latch-Up	Vtr(+)≥1.5 * ` Vtr(-)≤-0.5 * ` Itr(+)≥100n Itr(-)≤-100n	Vcc nA	0/6 (PASS)

*Moisture Sensitivity Level Test Flow & Condition:

Electrical Test \rightarrow SAT \rightarrow TC (-65°C~+150°C, 5Cycles) \rightarrow Bake (125°C, 24Hrs) \rightarrow Soak Level III (30°C, 60%R.H., 192Hrs) \rightarrow Convection Reflow (260 +5/-0°C, 0~20Secs, 3Cycles) \rightarrow Electrical Test \rightarrow SAT

Confidential -1 / 9- Nov.2020

1. INTRODUCTION

In order to meet the most stringent market demands for high quality and reliability semiconductor components, Alliance maintains a strict reliability program in all products. The purpose of this report is to give an overview of the reliability status of AS5F38G04SND-08LIN. Accelerated tests are performed on product, and then the re-sults are extrapolated to standard operating conditions in order to calculate and estimate the component's failure rate.

2. PRODUCT INFORMATION

SPI (Serial Peripheral Interface) NAND provides a low cost and low pin count solution to alternate SPI-NOR in high density non-volatile memory storage solution for embedded systems. The AS5F38G04SND-08LIN is packaged in a standard 8-pin LGA.

3. RELIABILITY

Many stress tests have been standardized in such documents as MIL-STD-883, EIAJ-IC-121, EIA/JESD22 and JEDEC-NOTE-17. From these standards, Alliance has selected a series of tests to ensure that reliability targets are being met. These tests, including life test, environmental test, ESD test and latch-up test, are discussed in the following sections.

According to the qualification family concept from Jedec standard No.47, some of the product or package qualification data can be shared with other similar products that have the same Fab process or Assy construction.

3.1. Sample Preparation Flow

Assembly LGA 8L → FT → Sampling Good Parts for Reliability Test

Confidential -2 / 9- Nov.2020

3.2. Life Test

The purpose of the Operating Life Test (OLT) is to determine the reliability of products by accelerating thermally activated failure mechanisms by subjecting samples to extreme temperatures under biased operating condition of 1.1*Vcc. The test samples are screened directly after final electrical testing. The oven temperature for the OLT is 125°C.

3.2.1. Test Flow

B/I 168Hrs (125°C, 1.1*Vcc) → Electrical Test

- → B/I 500Hrs (125°C, 1.1*Vcc) → Electrical Test
- → B/I 1000Hrs (125°C, 1.1*Vcc) → Electrical Test

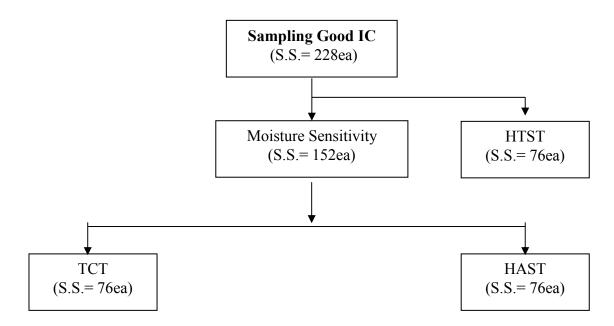
3.2.2. Test Criteria

Test Item	Reference Standard	Test Condition	Prediction Duration	Pass Criteria
OLT 1000Hrs	JESD22-A108	Ta= 125°C Vdd= 1.1*Vcc	\leq 10 (Year)	1/2 (A/R)

3.2.3. Test Result

The life test is performed for the purpose of accelerating the probable electrical and physical weakness of devices subjected to the specified conditions over an extended time period. Table 1 shows that there is no any failure in the final result.

Test Item	Sample		It (Failure / Sa	mple Size)	Failure Mode
rest item	Jampie	168 Hrs	500 Hrs	1000 Hrs	Tandre Mode
OLT	77ea	0/77	0/77	0/77	N/A


Table 1. OLT Test Result

Confidential -3 / 9- Nov.2020

3.3. Environmental Test

The purpose of environmental test is to evaluate the ability of semiconductor device to withstand the temperature stress, humidity stress, electrical stress or any combination of these. It can reveal not only the package quality issue but also the possible error in wafer process or chip design interacting with the assembly process.

3.3.1. Test Flow

3.3.2. Test Condition and Time

3.3.2.1. Moisture Sensitivity Test

The purpose of moisture sensitivity test is to identify the classification level of nonhermetic solid state Surface Mount Devices (SMDs) that are sensitive to moisture-induced stress so that they can be properly packaged, stored, and handled to avoid subsequent thermal and mechanical damage during the assembly solder reflow attachment and/or repair operation.

Confidential -4 / 9- Nov.2020

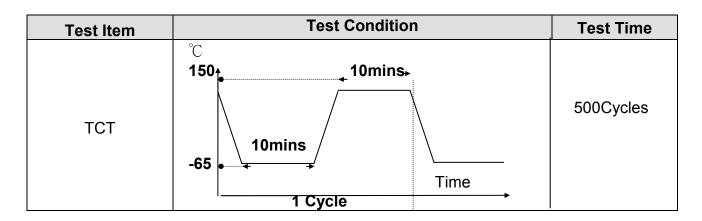
*Moisture Sensitivity Test Flow

Electrical Test \rightarrow SAT \rightarrow TC (-65°C~+150°C, 5Cycles) \rightarrow Bake (125°C, 24Hrs) \rightarrow Soak Level III (30°C, 60%R.H., 192Hrs) \rightarrow Convection Reflow (260 +5/-0°C, 0~20Secs, 3Cycles) \rightarrow Electrical Test \rightarrow SAT

Test Item	Test Condition (Level III)	Test Time
Temp. Cycle	-65°ℂ ~ +150°ℂ	5Cycles
Bake	125℃	24Hrs
Unbiased Temp- Humidity Soak	30℃, 60%R.H.	192Hrs
Convection Reflow	IR REFLOW PROFILE FOR 260 – 0 / +5°C (Pb-Free) Max 265	3Cycles

3.3.2.2. High-Temperature Storage Life Test

The high-temperature storage life test measures device resistance to a high-temperature environment that simulates a storage environment. The stress temperature is set to 150° C in order to accelerate the effect of temperature on the test samples. In the test, no voltage bias is applied to the devices.


Confidential -5 / 9- Nov.2020

Test Item	Test Condition	Test Time	
HTST	150 ℃	1000Hrs	

3.3.2.3. Temperature Cycling Test

The purpose of temperature cycling test is to study the effect of thermal expansion mismatch among the different components within a specific die and package system. The cycling test system has a cold dwell at -65°C and a hot dwell 150°C, and it employs a circulating air environment to ensure rapid stabilization at a specified temperature. During temperature cycling test, devices are inserted into the cycling test system and held at cold dwell for 10 minutes, and then the devices are heated to hot dwell for 10 minutes. One cycle includes the duration at both extreme temperatures and the two transition times. The transition period is less than one minute at 25°C. Samples of surface mount devices must first undergo preconditioning and pass a final electrical test prior to the temperature cycling test.

3.3.2.4. Highly-Accelerated Temperature and Humidity Stress Test

The highly-accelerated temperature and humidity stress test is performed for the purpose of evaluating the reliability of nonhermetic packaged solid-state device in an envi-

Confidential -6 / 9- Nov.2020

ronment with high humidity. It employs severe condition of temperature and humidity that accelerate the penetration of moisture through the external protective material (encapsulant or seal) or along the interface between the external protective material and the metallic conductor that pass through it. The stress conditions of the HAST are 130°C, 85% relativity humidity, and 2.3atm pressure. Samples of surface mount devices are subjected to preconditioning and a final electrical test prior to the highly-accelerated temperature and humidity stress test.

Test Item	Test Condition	Test Time
HAST	130℃, 85%R.H., 2.3atm	96Hrs

3.3.3. Test Criteria and Result

Table 2 shows the test results and reference standard of environmental test. The test status and results of AS5F38G04SND-08LIN are also pre-sented in the table. All pass from these test results mean that Alliance's products are much more endurable in most of their service environ-ment.

Test Item	Reference Standard	A/R Criteria	Failure/S.S.	Status	Failure Mode
Moisture Sensitivity	J-STD-020	0/1	0/152	PASS	N/A
HTST	JESD22- A103	0/1	0/76	PASS	N/A
TCT*	JESD22- A104	0/1	0/76	PASS	N/A
HAST*	JESD22- A118	0/1	0/76	PASS	N/A

^{*} Sampling from Moisture Sensitivity

Table 2. Environmental Test Criteria and Result

Confidential -7 / 9- Nov.2020

3.4. ESD Test

Electrical discharge into semiconductor product is one of the leading causes of device failure in the customer's manufacturing process. Alliance per-forms the ESD test to ensure that the performance of AS5F38G04SND-08LIN will not be degraded to an unacceptable level by exposure to a succession of electro-static discharge. The test methods and test results are shown in Table 3.

Test Item		Test Method			Result
rest item	Reference Standard	Test Condition	Criteria	Sample	(F/S.S)
H.B.M.	JESD22-A114	R=1.5KΩ, C=100pF	≥±2KV	3ea	0/3
M.M.	JESD22-A115	R=0KΩ, C=200pF	≥±200V	3ea	0/3
C.D.M.	JESD22-C101	Non-Socket Mode	≥±500V	3ea	0/3

Table 3. ESD Test Condition and Result

3.5. Latch-Up Test

CMOS products can be prone to over-voltage exceeding the maximum device rating if the parasitic p-n-p-n SCRs (Silicon-controlled rectifier) are improperly biased. When the SCR turns on, it draws excessive current and causes products being damaged by thermal runaway. The Table 4 shows the latch-up test method and the test result of no failure.

Test Item		Test Method		Result
rest item	Reference Standard	Test Condition & Criteria	Sample	(F/S.S)
Latch-Up	JESD78	Vtr(+)≥1.5 * Vcc Vtr(-)≤-0.5 * Vcc Itr(+)≥100mA Itr(-)≤-100mA	6ea	0/6

Table 4. Latch-Up test Condition and Result

4. CONCLUSION

Reliability test is to ensure the ability of a product in order to perform a required function under specific conditions for a certain period of time. Through those tests, the devices of potential failure can be screened out before shipping to

Confidential -8 / 9- Nov.2020

the customer. At the same time, the test results are fed back to process, design and other related departments for improving product quality and reliability.

The results of life test, environmental test, ESD test and latch-up test also ensure that the AS5F38G04SND-08LIN is manufactured under a precise control of quality work by Alliance and its subcontractors. *Thus, this experiment based on the* Alliance *reliability test standard for above test items can all pass*.

With the extensive research and development activities and the cooperation of all departments, Alliance continuously sets and maintains higher standard of qual-ity and reliability to satisfy the future demand of its customers.

Confidential -9 / 9- Nov.2020