

AS7C38096B 1024K X 8 BIT HIGH SPEED CMOS SRAM

REVISION HISTORY

Revision Desc Rev. 1.0 Initial

Description Initial Issue Issue Date June.2014

AS7C38096B 1024k x 8 bit high speed cmos sram

FEATURES

- Fast access time : 10ns
- Low power consumption: Operating current: 90/80mA (TYP.) Standby current: 3mA (TYP.)
- Single 3.3V power supply
- All inputs and outputs TTL compatible
- Fully static operation
- Tri-state output
- Data retention voltage: 1.5V (MIN.)
- All parts are ROHS Compliant
- Package : 48-ball 6mm x 8mm TFBGA

Table 1. Speed Grade Information

GENERAL DESCRIPTION

The AS7C38096B is a 16M-bit high speed CMOS static random access memory organized as 1,024K words by 8 bits. It is fabricated using very high performance, high reliability CMOS technology. Its standby current is stable within the range of operating temperature.

The AS7C38096B operates from a single power supply of 3.3V and all inputs and outputs are fully TTL compatible

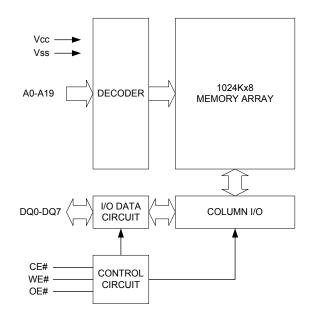
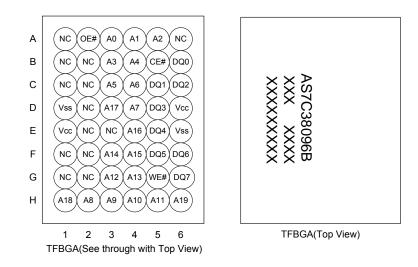

Product	V., Pange Speed		Power Dissipation		
Family	V _{cc} Range	Speed	Standby(I _{SB1} ,TYP.)	Operating(I _{CC} ,TYP.)	
AS7C38096B	2.7 ~ 3.6V	10ns	3mA	80mA	

Table 2. Ordering Information

Product part No	Org	Temperature	Package
AS7C38096B-10BIN	1024K x 8	Industrial -40°C to 85°C	48-ball 6mm x 8mm TFBGA

FUNCTIONAL BLOCK DIAGRAM


PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 – A19	Address Inputs
DQ0 – DQ7	Data Inputs/Outputs
CE#	Chip Enable Input
WE#	Write Enable Input
OE#	Output Enable Input
V _{CC}	Power Supply
V _{SS}	Ground

AS7C38096B 1024K X 8 BIT HIGH SPEED CMOS SRAM

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Voltage on V_{CC} relative to V_{SS}	V _{T1}	-0.5 to 4.6	V
Voltage on any other pin relative to V_{SS}	V _{T2}	-0.5 to Vcc+0.5	V
Operating Temperature	T _A	-40 to 85(I grade)	°C
Storage Temperature	T _{STG}	-65 to 150	°C
Power Dissipation	P _D	1	W
DC Output Current	I _{OUT}	50	mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

TRUTH TABLE

MODE	CE#	OE#	WE#	I/O OPERATION	SUPPLY CURRENT
Standby	Н	Х	Х	High-Z	I _{SB1}
Output Disable	L	Н	Н	High-Z	I _{CC}
Read	L	L	Н	D _{OUT}	I _{CC}
Write	L	Х	L	D _{IN}	I _{CC}

Note: $H = V_{IH}$, $L = V_{IL}$, X = Don't care.

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP. ^{*4}	MAX.	UNIT
Supply Voltage	V _{CC}	-10	2.7	3.3	3.6	V
Input High Voltage	V _{IH} ¹		2.2	-	Vcc+0.3	V
Input Low Voltage	V _{IL} *2		- 0.3	-	0.8	V
Input Leakage Current	ILI	$V_{CC} \ge V_{IN} \ge V_{SS}$	- 1	-	1	μA
Output Leakage Current	I _{LO}	$V_{CC} \ge V_{OUT} \ge V_{SS},$ Output Disabled	- 1	-	1	μA
Output High Voltage	V _{OH}	I _{ОН} = -4mA	2.4	-	-	V
Output Low Voltage	V _{OL}	I _{OL} = 8mA	-	-	0.4	V
Average Operating Power Supply Current	Icc	$\begin{array}{l l} \text{CE\#} & \leq 0.2, \\ \text{Others at } 0.2 \text{V or Vcc-} 0.2 \text{V}_{-10} \\ \text{I}_{\text{I/O}} = 0 \text{mA;} \text{f=max} \end{array}$	-	80	110	mA
Standby Power Supply Current	I _{SB1}	$\begin{array}{ll} CE\# \ \geqq V_{CC} \text{ - } 0.2V,\\ Others at 0.2V \text{ or } V_{CC} \text{ - } 0.2V \end{array}$	-	4	40	mA

Notes:

1. $V_{IH}(max) = V_{CC} + 2.0V$ for pulse width less than 6ns. 2. $V_{IL}(min) = V_{SS} - 2.0V$ for pulse width less than 6ns.

3. Over/Undershoot specifications are characterized on engineering evaluation stage, not for mass production test.

4. Typical values are included for reference only and are not guaranteed or tested.

Typical valued are measured at Vcc = Vcc(TYP.) and TA = 25°C

CAPACITANCE (T_A = 25°C, f = 1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX	UNIT
Input Capacitance	C _{IN}	-	8	pF
Input/Output Capacitance	CI/O	-	10	pF

Note : These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

Speed	10ns
Input Pulse Levels	0.2V to Vcc - 0.2V
Input Rise and Fall Times	3ns
Input and Output Timing Reference Levels	V _{CC} /2
Output Load	C_L = 30pF + 1TTL, I_{OH}/I_{OL} = -4mA/8mA

AS7C38096B 1024K X 8 BIT HIGH SPEED CMOS SRAM

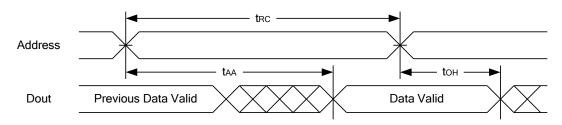
AC ELECTRICAL CHARACTERISTICS

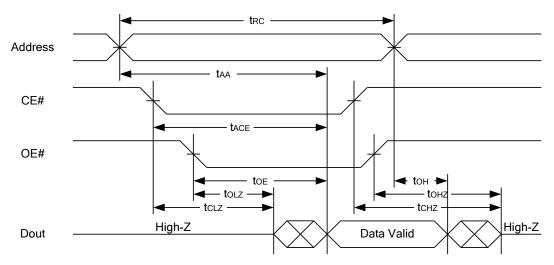
(1) READ CYCLE

PARAMETER	SYM.	AS7C38	096B-10	UNIT
FARAMETER	5 m.	MIN.	MAX.	
Read Cycle Time	t _{RC}	10	-	ns
Address Access Time	t _{AA}	-	10	ns
Chip Enable Access Time	t _{ACE}	-	10	ns
Output Enable Access Time	t _{OE}	-	4.5	ns
Chip Enable to Output in Low-Z	t _{CLZ} *	2	-	ns
Output Enable to Output in Low-Z	t _{oLZ} *	0	-	ns
Chip Disable to Output in High-Z	t _{CHZ} *	-	4	ns
Output Disable to Output in High-Z	t _{OHZ} *	-	4	ns
Output Hold from Address Change	t _{он}	2	-	ns

(2) WRITE CYCLE

PARAMETER	SYM.	AS7C38	AS7C38096B-10		
FARAIVIETER	5111.	MIN.	MAX.	UNIT	
Write Cycle Time	t _{wc}	10	-	ns	
Address Valid to End of Write	t _{AW}	8	-	ns	
Chip Enable to End of Write	t _{cw}	8	-	ns	
Address Set-up Time	t _{AS}	0	-	ns	
Write Pulse Width	t _{WP}	8	-	ns	
Write Recovery Time	t _{WR}	0	-	ns	
Data to Write Time Overlap	t _{DW}	6	-	ns	
Data Hold from End of Write Time	t _{DH}	0	-	ns	
Output Active from End of Write	t _{ow} *	2	-	ns	
Write to Output in High-Z	t _{wHZ} *	-	4	ns	


*These parameters are guaranteed by device characterization, but not production tested.


Rev. 1.0

TIMING WAVEFORMS

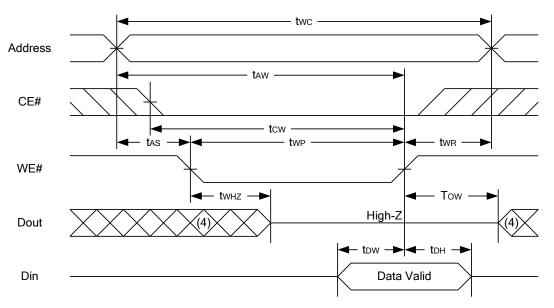
READ CYCLE 1 (Address Controlled) (1,2)

READ CYCLE 2 (CE# and OE# Controlled) (1,3,4,5)

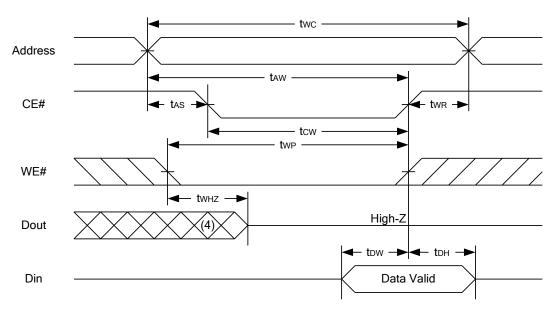
Notes :

1.WE# is high for read cycle.

2.Device is continuously selected OE# = low, CE# = low.


3.Address must be valid prior to or coincident with CE# = low; otherwise tAA is the limiting parameter. 4.t_{CLZ}, t_{CLZ}, t_{CHZ} and t_{OHZ} are specified with C_L = 5pF. Transition is measured \pm 500mV from steady state.

5.At any given temperature and voltage condition, t_{CHZ} is less than t_{CLZ} , t_{OHZ} is less than t_{OLZ} .



AS7C38096B 1024K X 8 BIT HIGH SPEED CMOS SRAM

WRITE CYCLE 1 (WE# Controlled) (1,2,3,5,6)

WRITE CYCLE 2 (CE# Controlled) (1,2,5,6)

Notes :

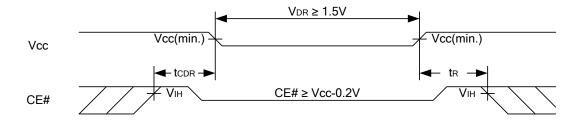
1.WE#,CE#, LB#, UB# must be high during all address transitions.

2.A write occurs during the overlap of a low CE#, low WE#, LB# or UB# = low.

3.During a WE# controlled write cycle with OE# low, twp must be greater than twHz + tow to allow the drivers to turn off and data to be placed on the bus.

4. During this period, I/O pins are in the output state, and input signals must not be applied.

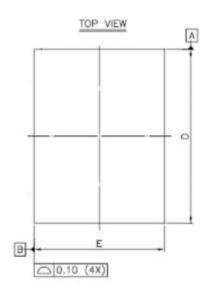
5.If the CE#, LB#, UB# low transition occurs simultaneously with or after WE# low transition, the outputs remain in a high impedance state. 6.t_{ow} and t_{WHZ} are specified with C_L = 5pF. Transition is measured ±500mV from steady state.

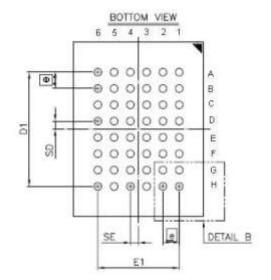

Rev. 1.0

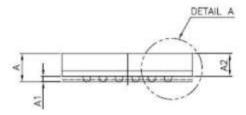
DATA RETENTION CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Vcc for Data Retention	V_{DR}	$CE# \ge V_{CC} - 0.2V$	1.5	-	3.6	V
Data Retention Current	I _{DR}	V_{CC} = 1.5V CE# ≧ V_{CC} - 0.2V Others at 0.2V or V_{CC} – 0.2V	-	3	25	mA
Chip Disable to Data Retention Time	t _{CDR}	See Data Retention Waveforms (below)	0	-	-	ns
Recovery Time	t _R		t _{RC*}	-	-	ns

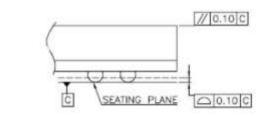
 t_{RC^*} = Read Cycle Time


DATA RETENTION WAVEFORM





PACKAGE OUTLINE DIMENSION


48-ball 6mm × 8mm TFBGA Package Outline Dimension

SIDE VIEW

ſ

DIMENSION

/	,	Å	SOLDER BALL
ĺ	Ο	Q	
Ì	0	0	⊕ 0.15@ C A B 0.08@ C

SYM.	(mm)			(inch)		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	_	—	1.40		_	0.055
A1	0.20	0.25	0.30	0.008	0.010	0.012
A2	—	—	1.05		—	0.041
b	0.30	0.35	0.40	0.012	0.014	0.016
D	7.95	8.00	8.05	0.313	0.315	0.317
D1	5.25 BSC			0.207 BSC		
E	5.95	6.00	6.05	0.234	0.236	0.238
E1	3.75 BSC			0.148 BSC		
SE	0.375 TYP			0.015 TYP		
SD	0.375 TYP			0.015 TYP		
e	0.75 BSC			0.030 BSC		

Ι

DIMENSION

NOTE:

1. CONTROLLING DIMENSION : MILLIMETER.

2. REFERENCE DOCUMENT : JEDEC MO-207.

DETAIL B

AS7C38096B 1024K X 8 BIT HIGH SPEED CMOS SRAM

Alliance Memory Inc. reserves the rights to change the specifications and products without notice.

Alliance Memory, Inc., 551 Taylor Way, Suite #1, San Carlos, CA 94070, USA Tel: +1 650 610 6800 Fax: +1 650 620 9211