

Revision History - AS7C164A

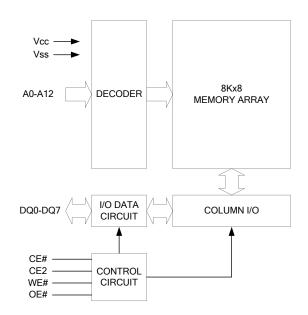
Revision	Details	Date
Rev 1.0	Preliminary datasheet	November 2009
Rev 2.0	Added 28pin Skinny PDIP(300mil) package option	May 2015
Rev 3.0	Added Industrial grade	Nov. 2016
Rev 4.0	Removed 12ns speed due to poor yields can only offer 15ns	May 2017

FEATURES

- ■Fast access time : 15 ns
- Low power consumption:
 Operating current : 80mA (TYP.)
 Standby current : 1mA (TYP.)
- Single 5V power supply
- All inputs and outputs TTL compatible
- ■Fully static operation
- Tri-state output
- Data retention voltage : 2.0V (MIN.)
- Green package available
- Package : 28-pin 300 mil SOJ 28-pin 300 mil Skinny P-DIP

GENERAL DESCRIPTION

The AS7C164A is a 65,536-bit high speed CMOS static random access memory organized as 8,192 words by 8 bits. It is fabricated using very high performance, high reliability CMOS technology. Its standby current is stable within the range of operating temperature.

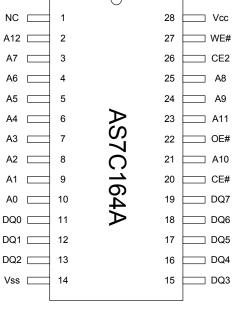

The AS7C164A is well designed for high speed system applications, and particularly well suited for battery back-up nonvolatile memory application.

The AS7C164A operates from a single power supply of 5V and all inputs and outputs are fully TTL compatible

PRODUCT FAMILY

Product	Operating	Vcc Range	Speed	Power D	Dissipation
Family	Temperature	veerkange	opeed	Standby(IsB1,TYP.)	Operating(Icc,TYP.)
AS7C164A	(C) 0 ~ 70°C (I) -40 ~ 85°C	4.5 ~ 5.5V	15ns	1mA	90/80mA

FUNCTIONAL BLOCK DIAGRAM



PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 - A12	Address Inputs
DQ0 – DQ7	Data Inputs/Outputs
CE#, CE2	Chip Enable Inputs
WE#	Write Enable Input
OE#	Output Enable Input
Vcc	Power Supply
Vss	Ground
NC	No Connection

PIN CONFIGURATION

Skinny PDIP/SOJ

ABSOLUTE MAXIMUM RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Voltage on Vcc relative to Vss	VT1	-0.5 to 6.5	V
Voltage on any other pin relative to Vss	Vt2	-0.5 to Vcc+0.5	V
		0 to 70(C grade)	0~
Operating Temperature	T ^A	-40 to 85(I grade)	°C
Storage Temperature	Tstg	-65 to 150	°C
Power Dissipation	PD	1	W
DC Output Current	Іоит	50	mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

TRUTH TABLE

MODE	CE#	CE2	OE#	WE#	I/O OPERATION	SUPPLY CURRENT
Standby	Н	Х	Х	Х	High-Z	ISB1
Standby	Х	L	Х	Х	High-Z	I _{SB1}
Output Disable	L	Н	Н	Н	High-Z	lcc
Read	L	Н	L	Н	Dout	lcc
Write	L	Н	Х	L	DIN	lcc

Note: $H = V_{IH}$, $L = V_{IL}$, X = Don't care.

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP. ⁴	MAX.	UNIT
Supply Voltage	Vcc			4.5	5.0	5.5	V
Input High Voltage	VIH ^{*1}			2.4	-	Vcc+0.5	V
Input Low Voltage	VIL ^{*2}			- 0.5	-	0.8	V
Input Leakage Current	ILI	$V_{CC} \geqq V_{IN} \geqq V_{SS}$		- 1	-	1	μA
Output Leakage Current	Ilo	$Vcc \ge Vout \ge Vss$, Output Disabled		- 1	-	1	μA
Output High Voltage	Vон	Іон = -1mA		2.4	-	-	V
Output Low Voltage	Vol	IoL = 2mA		-	-	0.4	V
Average Operating Power supply Current		Cycle time = Min. CE# = VIL and CE2 = VIH, II/o = 0mA Other pins at VIH or VIL		-	80	140	mA
Standby Power Supply Current	ISB1	$\begin{array}{l} \mbox{CE\#} \geqq V_{CC}\mbox{-}0.2V \mbox{ or } \mbox{CE2} \leqq \\ \mbox{Other pins at } 0.2V \mbox{ or } V_{CC}\mbox{-} \end{array}$		-	1	5	mA

Notes:

1. $V_{IH}(max) = V_{CC} + 3.0V$ for pulse width less than 10ns.

2. $V_{IL}(min) = V_{SS} - 3.0V$ for pulse width less than 10ns.

3. Over/Undershoot specifications are characterized, not 100% tested.

4. Typical values are included for reference only and are not guaranteed or tested. Typical valued are measured at V_{CC} = V_{CC}(TYP.) and T_A = 25° C

CAPACITANCE (TA = 25°C, f = 1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX	UNIT
Input Capacitance	Cin	-	6	pF
Input/Output Capacitance	Cı/o	-	8	pF

Note : These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

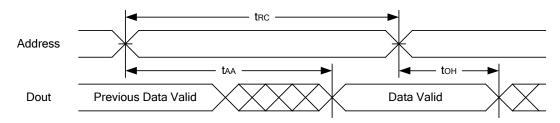
Input Pulse Levels	0.2V to Vcc - 0.2V
Input Rise and Fall Times	3ns
Input and Output Timing Reference Levels	1.5V
Output Load	Сь = 30pF + 1TTL, Іон/Іоь = -4mA/8mA

AC ELECTRICAL CHARACTERISTICS

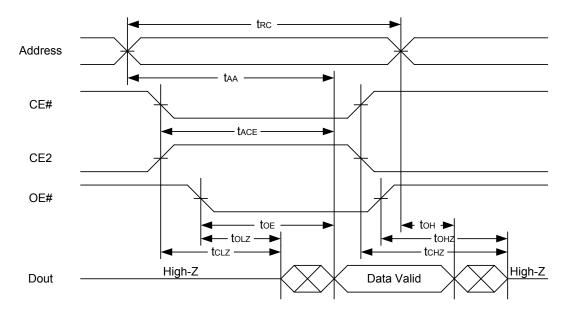
(1) READ CYCLE

PARAMETER	SYM.	AS7C1	64A-15	UNIT
		MIN.	MAX.	
Read Cycle Time	trc	15	-	ns
Address Access Time	taa	-	15	ns
Chip Enable Access Time	t ACE	-	15	ns
Output Enable Access Time	toe	-	7	ns
Chip Enable to Output in Low-Z	tcLz*	4	-	ns
Output Enable to Output in Low-Z	tolz*	0	-	ns
Chip Disable to Output in High-Z	tснz*	-	7	ns
Output Disable to Output in High-Z	tонz*	-	7	ns
Output Hold from Address Change	tон	3	-	ns

(2) WRITE CYCLE


	0)/14			TINUT
PARAMETER	SYM.	AS7C1		UNIT
		MIN.	MAX.	
Write Cycle Time	twc	15	-	ns
Address Valid to End of Write	taw	12	-	ns
Chip Enable to End of Write	tcw	12	-	ns
Address Set-up Time	tas	0	-	ns
Write Pulse Width	twp	10	-	ns
Write Recovery Time	twr	0	-	ns
Data to Write Time Overlap	tow	8	-	ns
Data Hold from End of Write Time	tон	0	-	ns
Output Active from End of Write	tow*	4	-	ns
Write to Output in High-Z	twnz*	-	8	ns

*These parameters are guaranteed by device characterization, but not production tested.



TIMING WAVEFORMS

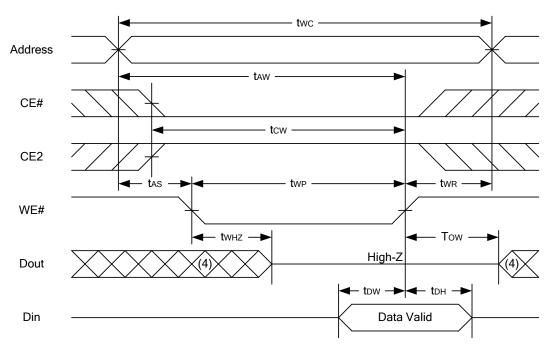
READ CYCLE 1 (Address Controlled) (1,2)

READ CYCLE 2 (CE# and CE2 and OE# Controlled) (1,3,4,5)

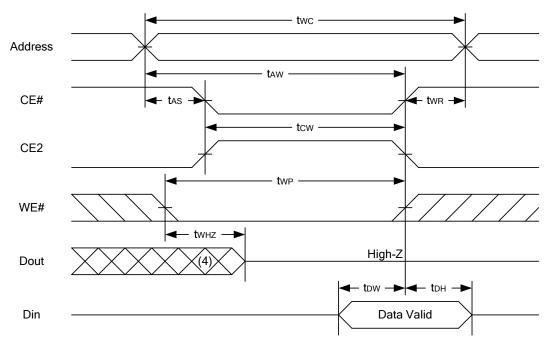
Notes :

1.WE# is high for read cycle.

2.Device is continuously selected OE# = low, CE# = low., CE2 = high.


3.Address must be valid prior to or coincident with CE# = low, CE2 = high; otherwise tAA is the limiting parameter.

4.tcLz, toLz, tcHz and toHz are specified with C_L = 5pF. Transition is measured ±500mV from steady state.


5.At any given temperature and voltage condition, t_{CHZ} is less than t_{CLZ} , t_{OHZ} is less than t_{OLZ} .

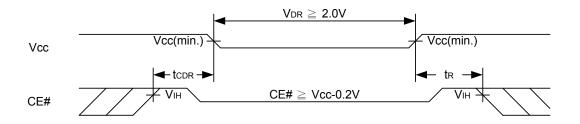
WRITE CYCLE 1 (WE# Controlled) (1,2,3,5,6)

WRITE CYCLE 2 (CE# and CE2 Controlled) (1,2,5,6)

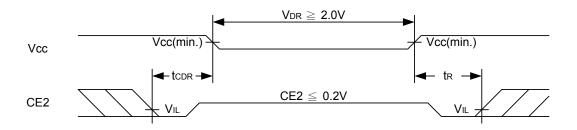
Notes :

- 2.A write occurs during the overlap of a low CE#, high CE2, low WE#.
- 3.During a WE#controlled write cycle with OE# low, twp must be greater than twHz + tow to allow the drivers to turn off and data to be placed on the bus.
- 4. During this period, I/O pins are in the output state, and input signals must not be applied.
- 5.If the CE#low transition and CE2 high transition occurs simultaneously with or after WE# low transition, the outputs remain in a high impedance state.
- 6.tow and twHz are specified with CL = 5pF. Transition is measured \pm 500mV from steady state.

^{1.}WE#, CE# must be high or CE2 must be low during all address transitions.


DATA RETENTION CHARACTERISTICS

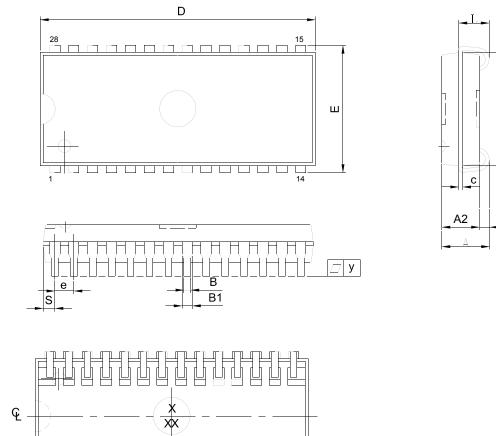
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Vcc for Data Retention		$\begin{array}{l} CE\# \geqq V_{CC} \text{-} 0.2V \\ or \ CE2 \leqq 0.2V \end{array}$	2.0	-	5.5	V
Data Retention Current	Idr	$\begin{array}{l} \mbox{Vcc} = 2.0\mbox{V} \\ \mbox{CE\#} \geq \mbox{Vcc} - 0.2\mbox{V} \mbox{ or } \mbox{CE2} \leq 0.2\mbox{V} \\ \mbox{Others at } 0.2\mbox{V} \mbox{ or } \mbox{V}_{\mbox{cc}} - 0.2\mbox{V} \end{array}$	-	0.6	3	mA
Chip Disable to Data Retention Time	tcdr	See Data Retention Waveforms (below)	0	-	-	ns
Recovery Time	tR		tRC∗	-	-	ns


tRC∗ = Read Cycle Time

DATA RETENTION WAVEFORM

Low Vcc Data Retention Waveform (1) (CE# controlled)

Low Vcc Data Retention Waveform (2) (CE2 controlled)

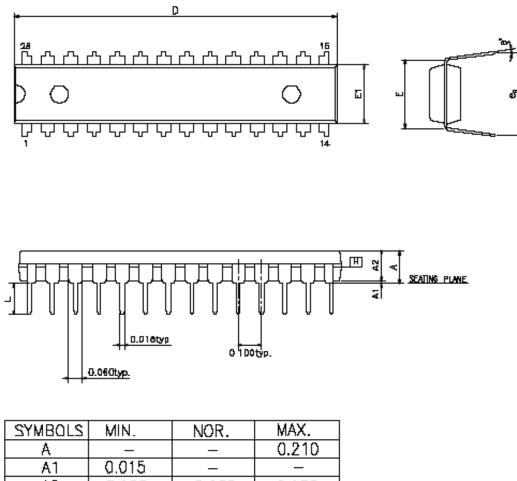


Ш

A1

28-pin 300 mil SOJ Package Outline Dimension

UNIT SYM.	INCH(REF)	MM(BASE)
A	0.140 (MAX)	3.556 (MAX)
A1	0.026 (MIN)	0.660 (MIN)
A2	0.100±0.005	2.540±0.127
В	0.018±0.003	0.457±0.076
B1	0.028 ±0.003	0.711±0.076
С	0.010±0.003	0.254±0.076
D	0.710±0.010	18.03±0.254
E	0.337±0.010	8.560±0.254
E1	0.300±0.005	7.620±0.127
е	0.050±0.003	1.270±0.076
L	0.087±0.010	2.210±0.254
S	0.030±0.004	0.762±0.102
Y	0.003 (MAX)	0.076 (MAX)


Note : 1.S/E/D dimension is not including mold flash.

2. The end flash in package lengthwise is not more than 10 mils each side.

PACKAGE OUTLINE DIMENSION

28 pin 300 mil PDIP Package Outline Dimension

		1.011.	1010 10 34			
A	_	—	0.210			
A1	0.015	—	_			
A2	D.125	0.130	0.135			
D	1.385	1.390	1.400			
E	0.310 BSC					
E1	0.283	0.288	0.293			
L	0.115	0.130	0.150			
€ _B	0.330	0.350) 0.370			
Ð	0	7	15			
UNIT : INCH						

NOTE: 1.JEDEC OUTLINE : MS-D15 AH

ORDERING INFORMATION

Package/Access Time	Temperature	15 ns	
28-pin 300 mil SOJ	Commercial	AS7C164A-15JCN	
28-pin 300 mil Skinny P-DIP	Commercial	AS7C164A-15PCN	
28-pin 300 mil SOJ	Industrial	AS7C164A-15JIN	
28-pin 300 mil Skinny P-DIP	Industrial	AS7C164A-15PIN	

Suffix TR = tape and reel

PART NUMBERING SYSTEM

AS7C		164A	-15	J/P	C/I	N
SRAM prefix	Voltage: 5V supply	Device Number	Access Time	J = SOJ, 300 mil P= Skinny P-DIP, 300 mil	Temperature Range: C = 0° ~ 70 °C I = -40° ~ 85° C	N = Lead Free Part

Alliance Memory, Inc. 511 Taylor Way, San Carlos, CA 94070 Tel: 650-610-6800 Fax: 650-620-9211 www.alliancememory.com

Copyright © Alliance Memory All Rights Reserved

© Copyright 2007 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.