

REVISION HISTORY

<u>Revision</u> Rev. 1.0	Description Initial Issue	Issue Date Nov.19.2008
Rev. 1.1	Revised FEATURES & ORDERING INFORMATION Lead free and green package available to Green package available	May.6.2010
	Added packing type in ORDERING INFORMATION	
Rev. 1.2	Deleted T _{SOLDER} in <u>ABSOLUTE MAXIMUM RATINGS</u> Revised <u>PACKAGE OUTLINE DIMENSION</u> in page 11 Revised V _{DR} to 1.5V Revised <u>ORDERING INFORMATION</u> in page 12	Aug.30.2010
Rev. 1.3 Rev. 1.4	Revised typo in PRODUCT FAMILY page 1 Deleted E Grade	Oct.4.2010 Aug.9.2011
Rev. 1.5	Revised typo page 0 ABSOLUTE MAXIMUM RATINGS	Sep 29 2015
	Revised typo Page 3 - ABSOLUTE MAXIMUM RATINGS	

Revised Page 12 - Package option from T(TSOPII) to Z (TSOP II)

FEATURES

- Fast access time : 55ns
- Low power consumption: Operating current : 20mA (TYP.) Standby current : 2µA (TYP.)
- Single 2.7V ~ 5.5V power supply
- All outputs TTL compatible
- Fully static operation
- Tri-state output
- Data byte control : LB# (DQ0 ~ DQ7) UB# (DQ8 ~ DQ15)
- Data retention voltage : 1.5V (MIN.)
- Green package available Package : 44-pin 400 mil TSOP-II
- 48-ball 6mm x 8mm TFBGA

PRODUCT FAMILY

GENERAL DESCRIPTION

The AS6C1016 is a 1,048,576-bit low power CMOS static random access memory organized as 65,536 words by 16 bits. It is fabricated using very high performance, high reliability CMOS technology. Its standby current is stable within the range of operating temperature.

The AS6C1016 is well designed for low power application, and particularly well suited for battery back-up nonvolatile memory application.

The AS6C1016 operates from a single power supply of 2.7V ~ 5.5V and all inputs and outputs are fully TTL compatible

Product	Operating	Vac Danga Shood		Power Dissipation		
Family	Temperature	Vcc Range	Speed	Standby(IsB1,TYP.)	Operating(Icc,TYP.)	
AS6C1016(I)	-40 ~ 85 ℃	2.7 ~ 5.5V	55/70ns	2µA	20/18mA	

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 - A15	Address Inputs
DQ0 – DQ15	Data Inputs/Outputs
CE#	Chip Enable Input
WE#	Write Enable Input
OE#	Output Enable Input
LB#	Lower Byte Control
UB#	Upper Byte Control
Vcc	Power Supply
Vss	Ground

AS6C1016 64K X 16 BIT LOW POWER CMOS SRAM

PIN CONFIGURATION

TSOP II

ABSOLUTE MAXIMUM RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Voltage on Vcc relative to Vss	VT1	-0.5 to 6.5	V
Voltage on any other pin relative to Vss	Vt2	-0.5 to Vcc+0.5	V
Operating Temperature	Та	-40 to 85(I grade)	°C
Storage Temperature	Tstg	-65 to 150	°C
Power Dissipation	Po	1	W
DC Output Current	Іоит	50	mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

TRUTH TABLE

MODE	MODE CE#		WE#	VE# LB#		I/O OPE	RATION	SUPPLY CURRENT
MODE	CE#	CE# OE# WE# LB# UB#		DQ0-DQ7	DQ8-DQ15	SUPPLI CORRENT		
Standby	H X	X X	X X	X H	X H	High – Z High – Z	High – Z High – Z	Isb1
Output Disable	L	ΗI	H	L X	X L	High – Z High – Z	High – Z High – Z	lcc,lcc1
Read	L		H H H	L	H L L	D _{OUT} High – Z D _{OUT}	High – Z D _{OUT} D _{OUT}	lcc,lcc1
Write	L L L	X X X	L L L	L H L	H L L	D _{IN} High – Z D _{IN}	High – Z D _{IN} D _{IN}	lcc,lcc1

Note: $H = V_{IH}, L = V_{IL}, X = Don't care.$

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP. *4	MAX.	UNIT
Supply Voltage	Vcc			2.7	3.0	5.5	V
Input High Voltage	Vн* ¹			2.4	-	Vcc+0.3	V
Input Low Voltage	VII ^{*2}			- 0.2	-	0.6	V
Input Leakage Current	ILI	$V_{CC} \ge V_{IN} \ge V_{SS}$		- 1	-	1	μA
Output Leakage Current	Ilo	Vcc ≧ Vouт ≧ Vss, Output Disabled		- 1	-	1	μA
Output High Voltage	Vон	Іон = -1 m А	2.4	2.7	-	V	
Output Low Voltage	Vol	lo∟ = 2mA		-	-	0.4	V
Average Operating	lcc	Cycle time = Min. CE# = Vi∟ , I⊮o = 0mA Other pins at Vi∟ or Vi⊣	- 55	-	20	60	mA
Power supply Current	Icc1	Cycle time = 1μ s CE# = 0.2V , $I_{I/O}$ = 0mA Other pins at 0.2V or Vcc - 0.2V		-	4	10	mA
Standby Power Supply Current	Isb1	$CE# \ge V_{CC} - 0.2V$ Others at 0.2V or $V_{CC} - 0.2V$		-	2	50	μΑ

Notes:

1. VIH(max) = Vcc + 3.0V for pulse width less than 10ns.

2. $V_{IL}(min) = V_{SS} - 3.0V$ for pulse width less than 10ns. 3. Over/Undershoot specifications are characterized, not 100% tested.

4. Typical values are included for reference only and are not guaranteed or tested.

Typical values are measured at V_{CC} = V_{CC}(TYP.) and T_A = 25° C

5. This parameter is measured at Vcc = 3.0V

CAPACITANCE (TA = 25°C, f = 1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX	UNIT
Input Capacitance	CIN	-	6	pF
Input/Output Capacitance	CI/O	-	8	pF

Note : These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

Input Pulse Levels	0.2V to Vcc - 0.2V
Input Rise and Fall Times	3ns
Input and Output Timing Reference Levels	1.5V
Output Load	Сь = 30pF + 1TTL. Іон/Іоь = -2mA/4mA

AC ELECTRICAL CHARACTERISTICS

(1) READ CYCLE

PARAMETER	SYM.	AS6C1	1016-55	UNIT
		MIN.	MAX.	
Read Cycle Time	trc	55	_	ns
Address Access Time	taa	-	55	ns
Chip Enable Access Time	t ACE	-	55	ns
Output Enable Access Time	toe	-	30	ns
Chip Enable to Output in Low-Z	tcLz*	10	_	ns
Output Enable to Output in Low-Z	torz*	5	-	ns
Chip Disable to Output in High-Z	tснz*	-	20	ns
Output Disable to Output in High-Z	tонz*	-	20	ns
Output Hold from Address Change	tон	10	_	ns
LB#, UB# Access Time	tва	-	55	ns
LB#, UB# to High-Z Output	t внz*	-	25	ns
LB#. UB# to Low-Z Output	t _{BLZ} *	10	-	ns

(2) WRITE CYCLE

PARAMETER	SYM.	AS6C ²	1016-55	UNIT	
		MIN.	MAX.		
Write Cycle Time	twc	55	_	ns	
Address Valid to End of Write	taw	50	-	ns	
Chip Enable to End of Write	tcw	50		ns	
Address Set-up Time	tas	0		ns	
Write Pulse Width	twp	45	-	ns	
Write Recovery Time	twr	0		ns	
Data to Write Time Overlap	tow	25		ns	
Data Hold from End of Write Time	tон	0	-	ns	
Output Active from End of Write	tow*	5	-	ns	
Write to Output in High-Z	twнz*	-	20	ns	
LB#. UB# Valid to End of Write	tвw	50	-	ns	

*These parameters are guaranteed by device characterization, but not production tested.

TIMING WAVEFORMS

READ CYCLE 1 (Address Controlled) (1,2)

READ CYCLE 2 (CE# and OE# Controlled) (1,3,4,5)

Notes :

1.WE#is high for read cycle.

2.Device is continuously selected OE# = low, CE# = low, LB# or UB# = low.

3.Address must be valid prior to or coincident with CE# = low, LB# or UB# = low transition; otherwise tAA is the limiting parameter.

4.tclz, tblz, tolz, tcHz, tbHz and toHz are specified with CL = 5pF. Transition is measured \pm 500mV from steady state.

5.At any given temperature and voltage condition, tCHz is less than tCLZ , tBHz is less than tBLz, tOHz is less than tOLZ.

WRITE CYCLE 1 (WE# Controlled) (1,2,3,5,6)

WRITE CYCLE 2 (CE# Controlled) (1,2,5,6)

WRITE CYCLE 3 (LB#,UB# Controlled) (1,2,5,6)

Notes :

- 1.WE#,CE#, LB#, UB# must be high during all address transitions. 2.A write occurs during the overlap of a low CE#, low WE#, LB# or UB# = low.
- 3.During a WE# controlled write cycle with OE# low, twp must be greater than twHz + tow to allow the drivers to turn off and data to be placed on the bus.
- 4. During this period, I/O pins are in the output state, and input signals must not be applied. 5.If the CE#, LB#, UB# low transition occurs simultaneously with or after WE# low transition, the outputs remain in a high impedance state.
- 6.tow and twHz are specified with CL = 5pF. Transition is measured ±500mV from steady state.

DATA RETENTION CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Vcc for Data Retention	Vdr	CE# ≧ V _{CC} - 0.2V		1.5	-	5.5	V
Data Retention Current	IDR	V _{CC} = 1.5V CE# \ge V _{CC} - 0.2V Others at 0.2V or V _{CC} -0.2V	LL/LLI	-	0.5	20	μA
Chip Disable to Data Retention Time	topp	See Data Retention Waveforms (below)		0	-	-	ns
Recovery Time	tR	· · · /		t _{RC∗}	-	-	ns

tRC∗ = Read Cycle Time

DATA RETENTION WAVEFORM

Low Vcc Data Retention Waveform (1) (CE# controlled)

Low Vcc Data Retention Waveform (2) (LB#, UB# controlled)

AS6C1016 64k x 16 bit low power cmos sram

PACKAGE OUTLINE DIMENSION

44-pin 400mil TSOP- II Package Outline Dimension

DETAIL B

	DIMENS	ONS IN MILL	METERS	DIMENSIONS IN MILS			
SYMBOLS	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А	-	-	1.20	-	-	47.2	
A1	0.05	0.10	0.15	2.0	3.9	5.9	
A2	0.95	1.00	1.05	37.4	39.4	41.3	
b	0.30	-	0.45	11.8	-	17.7	
с	0.12	-	0.21	4.7	-	8.3	
D	18.212	18.415	18.618	717	725	733	
Е	11.506	11.760	12.014	453	463	473	
E1	9.957	10.160	10.363	392	400	408	
е	-	0.800	-	-	31.5	-	
L	0.40	0.50	0.60	15.7	19.7	23.6	
ZD	_	0.805	_	-	31.7	-	
v	-	-	0.076	-	-	3	
θ	0°	3°	6°	0°	3°	6°	

AS6C1016 64K X 16 BIT LOW POWER CMOS SRAM

48-ball 6mm × 8mm TFBGA Package Outline Dimension

DIMENSION DIMENSION (inch) (mm) SYM. MIN. NOM. MAX. MIN. NOM. MAX. _ 0.047 1.20 _ A ____ Aī 0.30 0.010 0.012 0.20 0.25 0.008 0.037 A2 0.94 _ ____ _ -0.012 0.014 D.016 þ 0.30 0.35 0.40 AA 0.313 0.315 0.317 D 7.95 8.00 8.05 D1 5.25 BSC 0.207 BSC AA E 5.95 6.00 6.05 0.234 0.236 0.238 E1 3.75 BSC 0.148 BSC SE 0.375 TYP 0.015 TYP SD 0.375 TYP 0.015 TYP 包 0.75 BSC 0.030 BSC

NOTE:

1. CONTROLLING DIMENSION : MILLIMETER.

2. REFERENCE DOCUMENT : JEDEC MO-207.

_____ I./

DETAIL B

ORDERING INFORMATION

Alliance	Organization	VCC Range	Package	Operating Temp	Sneed ns
AS6C1016-55ZIN	64K x 16	2.7V – 5.5V	44pin TSOP II	Industrial ∼ -40°C - 85°C	55
AS6C1016-55BIN	64K x 16	2.7V – 5.5V	48ball TFBGA	Industrial - -40°C - 85°C	55

PART NUMBERING SYSTEM

AS6C	1016	-55	X	Х	N
Low power SRAM prefix	Device Number 10 = 1M 16 = x16	Access Time	Package Options: Z = 44 pin TSOP II B = 48 ball TFBGA	Temperature Range: I = Industrial (-40°C to +85°C)	N = Lead Free ROHS Compliant Part

THIS PAGE IS LEFT BLANK INTENTIONALLY.